Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Linear multistep methods for stable differential equations $\ddot y=Ay+B(t)\dot y+c(t)$
HTML articles powered by AMS MathViewer

by Eckart Gekeler PDF
Math. Comp. 39 (1982), 481-490 Request permission


The approximation of ${y^{..}} = Ay + B(t){y^.} + c(t)$ by linear multistep methods is studied. It is supposed that the matrix A is real symmetric and negative semidefinite, that the multistep method has an interval of absolute stability $[ - s,0]$, and that ${h^2}\left \| A \right \| \leqslant s$ where h is the time step. A priori error bounds are derived which show that the exponential multiplication factor is of the form $\exp \{ {\Gamma _s}|||B|||_{n}(nh)\}$, $|||B|||_{n} = {\max _{0 \leqslant t \leqslant nh}}\left \| {B(t)} \right \|$.
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 65L05
  • Retrieve articles in all journals with MSC: 65L05
Additional Information
  • © Copyright 1982 American Mathematical Society
  • Journal: Math. Comp. 39 (1982), 481-490
  • MSC: Primary 65L05
  • DOI:
  • MathSciNet review: 669641