On optimal integration methods for Volterra integral equations of the first kind

Author:
C. J. Gladwin

Journal:
Math. Comp. **39** (1982), 511-518

MSC:
Primary 65R20; Secondary 45D05, 45L10

DOI:
https://doi.org/10.1090/S0025-5718-1982-0669643-1

MathSciNet review:
669643

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Families of methods depending on free parameters are constructed for the solution of nonsingular Volterra integral equations of the first kind in [5]. These parameters are restricted to certain regions in order that a certain polynomial satisfies both a stability and a consistency condition. In this note an optimal choice of the free parameters is outlined in order that the -norm of the roots of the polynomial is minimized.

**[1]**Celia Andrade and S. McKee,*On optimal high accuracy linear multistep methods for first kind Volterra integral equations*, BIT**19**(1979), no. 1, 1–11. MR**530109**, https://doi.org/10.1007/BF01931215**[2]**H. Brunner,*Projection methods for the approximate solution of integral equations of the first kind*, Proceedings of the Fifth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1975) Utilitas Math. Publ., Winnipeg, Man., 1976, pp. 3–23. Congressus Numerantium, No. XVI. MR**0411213****[3]**R. J. Duffin,*Algorithms for classical stability problems*, SIAM Rev.**11**(1969), 196–213. MR**249740**, https://doi.org/10.1137/1011034**[4]**H. Freeman,*Finite Differences for Actuarial Students*, Cambridge Univ. Press, Cambridge, 1962, p. 113.**[5]**Charles J. Gladwin,*Quadrature rule methods for Volterra integral equations of the first kind*, Math. Comp.**33**(1979), no. 146, 705–716. MR**521284**, https://doi.org/10.1090/S0025-5718-1979-0521284-2**[6]**C. J. Gladwin,*Numerical Solution of Volterra Integral Equations of the First Kind*, Ph.D. Thesis, Dalhousie Univ., 1975.**[7]**C. J. Gladwin and R. Jeltsch,*Stability of quadrature rule methods for first kind Volterra integral equations*, Nordisk Tidskr. Informationsbehandling (BIT)**14**(1974), 144–151. MR**502108**, https://doi.org/10.1007/bf01932943**[8]**Peter Henrici,*Discrete variable methods in ordinary differential equations*, John Wiley & Sons, Inc., New York-London, 1962. MR**0135729****[9]**P. A. W. Holyhead, S. McKee, and P. J. Taylor,*Multistep methods for solving linear Volterra integral equations of the first kind*, SIAM J. Numer. Anal.**12**(1975), no. 5, 698–711. MR**413564**, https://doi.org/10.1137/0712052**[10]**P. A. W. Holyhead and S. McKee,*Stability and convergence of multistep methods for linear Volterra integral equations of the first kind*, SIAM J. Numer. Anal.**13**(1976), no. 2, 269–292. MR**471396**, https://doi.org/10.1137/0713026**[11]**Mituo Kobayasi,*On numerical solution of the Volterra integral equations of the first kind by trapeziodal rule*, Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs.**14**(1967), no. 2, 1–14. MR**260221****[12]**W. Pogorzelski,*Integral equations and their applications. Vol. I*, Translated from the Polish by Jacques J. Schorr-Con, A. Kacner and Z. Olesiak. International Series of Monographs in Pure and Applied Mathematics, Vol. 88, Pergamon Press, Oxford-New York-Frankfurt; PWN-Polish Scientific Publishers, Warsaw, 1966. MR**0201934****[13]**Anthony Ralston,*A first course in numerical analysis*, McGraw-Hill Book Co., New York-Toronto-London, 1965. MR**0191070****[14]**P. J. Taylor,*The solution of Volterra integral equations of the first kind using inverted differentiation formulae*, Nordisk Tidskr. Informationsbehandling (BIT)**16**(1976), no. 4, 416–425. MR**433930**, https://doi.org/10.1007/bf01932725**[15]**P. H. M. Wolkenfelt,*Linear multistep methods and the construction of quadrature formulae for Volterra integral and integro-differential equations*, Afdeling Numerieke Wiskunde [Department of Numerical Mathematics], 76, Mathematisch Centrum, Amsterdam, 1979. MR**569940**

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20,
45D05,
45L10

Retrieve articles in all journals with MSC: 65R20, 45D05, 45L10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1982-0669643-1

Article copyright:
© Copyright 1982
American Mathematical Society