On the speed of convergence of the nearest integer continued fraction
HTML articles powered by AMS MathViewer
- by H. Jager PDF
- Math. Comp. 39 (1982), 555-558 Request permission
Abstract:
Let ${p_n}/{q_n}$ and ${A_n}/{B_n}$ denote the convergents of, respectively, the regular and the nearest integer continued fraction expansion of the irrational number x. There exists a function $k(n)$ such that ${A_n}/{B_n} = {p_{k(n)}}/{q_{k(n)}}$. Adams proved that for almost all x one has $\lim k(n)/n = \log 2/\log G$, $G = \frac {1}{2}(1 + \sqrt 5 )$. Here we present a shorter proof of this result, based on a simple expression for $k(n)$ and the ergodicity of the shift operator, connected with the nearest integer continued fraction.References
- William W. Adams, On a relationship between the convergents of the nearest integer and regular continued fractions, Math. Comp. 33 (1979), no. 148, 1321–1331. MR 537978, DOI 10.1090/S0025-5718-1979-0537978-9
- Patrick Billingsley, Ergodic theory and information, John Wiley & Sons, Inc., New York-London-Sydney, 1965. MR 0192027
- Oskar Perron, Die Lehre von den Kettenbrüchen. Bd I. Elementare Kettenbrüche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1954 (German). 3te Aufl. MR 0064172
- G. J. Rieger, Mischung und Ergodizität bei Kettenbrüchen nach nächsten Ganzen, J. Reine Angew. Math. 310 (1979), 171–181 (German). MR 546670, DOI 10.1515/crll.1979.310.171
- Andrew M. Rockett, The metrical theory of continued fractions to the nearer integer, Acta Arith. 38 (1980/81), no. 2, 97–103. MR 604225, DOI 10.4064/aa-38-2-97-103
- H. C. Williams, Some results concerning the nearest integer continued fraction expansion of $\surd D$, J. Reine Angew. Math. 315 (1980), 1–15. MR 564520, DOI 10.1515/crll.1980.315.1
Additional Information
- © Copyright 1982 American Mathematical Society
- Journal: Math. Comp. 39 (1982), 555-558
- MSC: Primary 10K10
- DOI: https://doi.org/10.1090/S0025-5718-1982-0669647-9
- MathSciNet review: 669647