On the zeros of the Riemann zeta function in the critical strip. II
HTML articles powered by AMS MathViewer
- by R. P. Brent, J. van de Lune, H. J. J. te Riele and D. T. Winter PDF
- Math. Comp. 39 (1982), 681-688 Request permission
Corrigendum: Math. Comp. 46 (1986), 771.
Abstract:
We describe extensive computations which show that Riemann’s zeta function $\zeta (s)$ has exactly 200,000,001 zeros of the form $\sigma +$ in the region $0 < t < 81,702,130.19$; all these zeros are simple and lie on the line $\sigma = \frac {1}{2}$. (This extends a similar result for the first 81,000,001 zeros, established by Brent in Math. Comp., v. 33, 1979, pp. 1361-1372.) Counts of the numbers of Gram blocks of various types and the failures of "Rosser’s rule" are given.References
- R. Backlund, "Sur les zéros de la fonction $\zeta (s)$ de Riemann," C. R. Acad. Sci. Paris, v. 158, 1914, pp. 1979-1982.
- Richard P. Brent, On the zeros of the Riemann zeta function in the critical strip, Math. Comp. 33 (1979), no. 148, 1361–1372. MR 537983, DOI 10.1090/S0025-5718-1979-0537983-2 R. P. Brent & L. Schoenfeld, Numerical Approximation of the Riemann Zeta Function, Technical Report, Dept. of Computer Science, The Australian National University. (To appear.)
- H. M. Edwards, Riemann’s zeta function, Pure and Applied Mathematics, Vol. 58, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0466039 W. Gabcke, Neue Herleitung und explizite Restabschätzung der Riemann-Siegel-Formel, Dissertation, Universität Göttingen, 1979.
- J. -P. Gram, Note sur les zéros de la fonction $\xi (s)$ de Riemann, Acta Math. 27 (1903), no. 1, 289–304 (French). MR 1554986, DOI 10.1007/BF02421310
- J. I. Hutchinson, On the roots of the Riemann zeta function, Trans. Amer. Math. Soc. 27 (1925), no. 1, 49–60. MR 1501297, DOI 10.1090/S0002-9947-1925-1501297-5
- E. Karkoschka and P. Werner, Einige Ausnahmen zur Rosserschen Regel in der Theorie der Riemannschen Zetafunktion, Computing 27 (1981), no. 1, 57–69 (German, with English summary). MR 623176, DOI 10.1007/BF02243438
- R. Sherman Lehman, Separation of zeros of the Riemann zeta-function, Math. Comp. 20 (1966), 523–541. MR 203909, DOI 10.1090/S0025-5718-1966-0203909-5
- D. H. Lehmer, On the roots of the Riemann zeta-function, Acta Math. 95 (1956), 291–298. MR 86082, DOI 10.1007/BF02401102
- D. H. Lehmer, Extended computation of the Riemann zeta-function, Mathematika 3 (1956), 102–108. MR 86083, DOI 10.1112/S0025579300001753 J. van de Lune, H. J. J. te Riele & D. T. Winter, Rigorous High Speed Separation of Zeros of Riemann’s Zeta Function, Report NW 113/81, Mathematical Centre, Amsterdam, October 1981.
- N. A. Meller, Computations connected with the check of Riemann’s hypothesis, Dokl. Akad. Nauk SSSR 123 (1958), 246–248 (Russian). MR 0099960 J. B. Rosser, J. M. Yohe & L. Schoenfeld, "Rigorous computation and the zeros of the Riemann zeta-function," Proc. IFIP Congress, Edinburgh, 1968. E. C. Titchmarsh, "The zeros of the Riemann zeta function," Proc. Roy. Soc. London, v. 151, 1935, pp. 234-255; v. 157, 1936, pp. 261-263.
- E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford, at the Clarendon Press, 1951. MR 0046485
Additional Information
- © Copyright 1982 American Mathematical Society
- Journal: Math. Comp. 39 (1982), 681-688
- MSC: Primary 10H05; Secondary 10-04, 30-04
- DOI: https://doi.org/10.1090/S0025-5718-1982-0669660-1
- MathSciNet review: 669660