## On the number of Markoff numbers below a given bound

HTML articles powered by AMS MathViewer

- by Don Zagier PDF
- Math. Comp.
**39**(1982), 709-723 Request permission

## Abstract:

According to a famous theorem of Markoff, the indefinite quadratic forms with exceptionally large minima (greater than $\frac {1}{3}$ of the square root of the discriminant) are in 1 : 1 correspondence with the solutions of the Diophantine equation ${p^2} + {q^2} + {r^2} = 3pqr$. By relating Markoffs algorithm for finding solutions of this equation to a problem of counting lattice points in triangles, it is shown that the number of solutions less than*x*equals $C{\log ^2}3x + O(\log x\log {\log ^2}x)$ with an explicitly computable constant $C = 0.18071704711507 \ldots$ Numerical data up to ${10^{1300}}$ is presented which suggests that the true error term is considerably smaller.

## References

- Alan Baker,
*Transcendental number theory*, Cambridge University Press, London-New York, 1975. MR**0422171** - J. W. S. Cassels,
*An introduction to Diophantine approximation*, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957. MR**0087708** - Harvey Cohn,
*Markoff forms and primitive words*, Math. Ann.**196**(1972), 8–22. MR**297847**, DOI 10.1007/BF01419427 - Harvey Cohn,
*Minimal geodesics on Fricke’s torus-covering*, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 73–85. MR**624806** - Harvey Cohn,
*Growth types of Fibonacci and Markoff*, Fibonacci Quart.**17**(1979), no. 2, 178–183. MR**536967**
G. Frobenius, - F. Hirzebruch and D. Zagier,
*The Atiyah-Singer theorem and elementary number theory*, Mathematics Lecture Series, No. 3, Publish or Perish, Inc., Boston, Mass., 1974. MR**0650832** - A. Markoff,
*Sur les formes quadratiques binaires indéfinies*, Math. Ann.**17**(1880), no. 3, 379–399 (French). MR**1510073**, DOI 10.1007/BF01446234 - Arnold Walfisz,
*Weylsche Exponentialsummen in der neueren Zahlentheorie*, Mathematische Forschungsberichte, XV, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963 (German). MR**0220685**

*Über die Markoffschen Zahlen*, Preuss. Akad. Wiss. Sitzungsberichte, 1913, pp. 458-487. C. Gurwood,

*Diophantine Approximation and the Markoff Chain*, Thesis, New York University, 1976, Section VI. G. H. Hardy & J. E. Littlewood, "Some problems of Diophantine approximation: The lattice points of a right-angled triangle," (1st memoir),

*Proc. London Math. Soc.*(2), v. 20, 1922, pp. 15-36, (2nd memoir),

*Abh. Math. Sem. Univ. Hamburg*, v. 1, 1921, pp. 212-249. In

*Collected Papers of G. H. Hardy*, Vol. I, pp. 136-158, 159-196, Clarendon Press, Oxford, 1966.

## Additional Information

- © Copyright 1982 American Mathematical Society
- Journal: Math. Comp.
**39**(1982), 709-723 - MSC: Primary 10F20; Secondary 10A20, 10B10
- DOI: https://doi.org/10.1090/S0025-5718-1982-0669663-7
- MathSciNet review: 669663