## CORRIGENDUM

H. C. Williams, "Some primes with interesting digit patterns,", Math. Comp., v. 32, 1978, p. 1308, line 4 after Table 4.

For 215789, read 2157989.
This trivial error has the following real interest. The integer

$$
N=N_{1}(83,3)=\left(10^{84}+17\right) / 9
$$

has 84 decimal digits: 83 ones followed by a three. There was little doubt here that $N$ is prime. But Williams and D. H. Lehmer found that

$$
\begin{gathered}
N-1=2^{3} \cdot 1531 \cdot H_{1}, \quad N+1=2 \cdot 3 \cdot H_{2}, \\
N^{2}+1=2 \cdot 5 \cdot 2069 \cdot 2157989 \cdot H_{4}, \\
N^{2}+N+1=7 \cdot 14869 \cdot H_{3}, \quad N^{2}-N+1=3 \cdot 271 \cdot H_{6},
\end{gathered}
$$

and that the five composite $H_{i}$ have no prime divisor $<5,988,337,680$. This (unusual) paucity of moderate prime factors meant that Williams was unable to prove $N$ prime even with the powerful method of Williams and Holte.

But recently Lenstra and Cohen easily proved $N$ prime with their efficient modification of Adleman's method. Their method, with complete details, will be published in this journal.
D. S.

