Block Runge-Kutta methods for the numerical integration of initial value problems in ordinary differential equations. II. The stiff case
HTML articles powered by AMS MathViewer
- by J. R. Cash PDF
- Math. Comp. 40 (1983), 193-206 Request permission
Abstract:
The approach described in the first part of this paper is extended to include diagonally implicit Runge-Kutta (DIRK) formulae. The algorithms developed are suitable for the numerical integration of stiff differential systems, and their efficiency is illustrated by means of some numerical examples.References
- Roger Alexander, Diagonally implicit Runge-Kutta methods for stiff o.d.e.’s, SIAM J. Numer. Anal. 14 (1977), no. 6, 1006–1021. MR 458890, DOI 10.1137/0714068
- J. E. Bond and J. R. Cash, A block method for the numerical integration of stiff systems of ordinary differential equations, BIT 19 (1979), no. 4, 429–447. MR 559952, DOI 10.1007/BF01931259
- J. C. Butcher, Coefficients for the study of Runge-Kutta integration processes, J. Austral. Math. Soc. 3 (1963), 185–201. MR 0152129, DOI 10.1017/S1446788700027932 J. C. Butcher, K. Burrage & F. H. Chipman, STRIDE: Stable Runge-Kutta Integrator for Differential Equations, Report No. 20, Dept. of Mathematics, University of Auckland, New Zealand, 1979. J. R. Cash, "Diagonally implicit Runge-Kutta formulae with error estimates," J. Inst. Math. Appl., v. 24, 1979, pp. 293-301.
- J. R. Cash, Stable recursions, Computational Mathematics and Applications, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York-Toronto, Ont., 1979. With applications to the numerical solution of stiff systems. MR 570113 M. Crouzieux, Sur l’Approximation des équations Différentielles Opérationnelles Linéaires par des Méthodes de Runge-Kutta, Ph.D. thesis, University of Paris, 1975.
- C. W. Gear, Runge-Kutta starters for multistep methods, ACM Trans. Math. Software 6 (1980), no. 3, 263–279. MR 585338, DOI 10.1145/355900.355901 A. C. Hindmarsh, GEAR: Ordinary Differential Equation System Solver, Rep. UCID-30001, Rev. 3, Lawrence Livermore Laboratory, Livermore, Calif., 1974.
- K. R. Jackson and R. Sacks-Davis, An alternative implementation of variable step-size multistep formulas for stiff ODEs, ACM Trans. Math. Software 6 (1980), no. 3, 295–318. MR 585340, DOI 10.1145/355900.355903 J. D. Lambert. Private communication, 1980.
- Bengt Lindberg, Characterization of optimal stepsize sequences for methods for stiff differential equations, SIAM J. Numer. Anal. 14 (1977), no. 5, 859–887. MR 519728, DOI 10.1137/0714058
- William Edmund Milne, Numerical solution of differential equations, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0068321 S. P. Nørsett, Semi-Explicit Runge-Kutta Methods, Mathematics and Computation, No. 6, University of Trondheim, 1974.
- A. Prothero and A. Robinson, On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations, Math. Comp. 28 (1974), 145–162. MR 331793, DOI 10.1090/S0025-5718-1974-0331793-2
- H. A. Watts and L. F. Shampine, $A$-stable block implicit one-step methods, Nordisk Tidskr. Informationsbehandling (BIT) 12 (1972), 252–266. MR 307483, DOI 10.1007/bf01932819
- Jack Williams and Frank de Hoog, A class of $A$-stable advanced multistep methods, Math. Comp. 28 (1974), 163–177. MR 356519, DOI 10.1090/S0025-5718-1974-0356519-8
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Math. Comp. 40 (1983), 193-206
- MSC: Primary 65L05
- DOI: https://doi.org/10.1090/S0025-5718-1983-0679440-X
- MathSciNet review: 679440