## Block Runge-Kutta methods for the numerical integration of initial value problems in ordinary differential equations. II. The stiff case

HTML articles powered by AMS MathViewer

- by J. R. Cash PDF
- Math. Comp.
**40**(1983), 193-206 Request permission

## Abstract:

The approach described in the first part of this paper is extended to include diagonally implicit Runge-Kutta (DIRK) formulae. The algorithms developed are suitable for the numerical integration of stiff differential systems, and their efficiency is illustrated by means of some numerical examples.## References

- Roger Alexander,
*Diagonally implicit Runge-Kutta methods for stiff o.d.e.’s*, SIAM J. Numer. Anal.**14**(1977), no. 6, 1006–1021. MR**458890**, DOI 10.1137/0714068 - J. E. Bond and J. R. Cash,
*A block method for the numerical integration of stiff systems of ordinary differential equations*, BIT**19**(1979), no. 4, 429–447. MR**559952**, DOI 10.1007/BF01931259 - J. C. Butcher,
*Coefficients for the study of Runge-Kutta integration processes*, J. Austral. Math. Soc.**3**(1963), 185–201. MR**0152129**, DOI 10.1017/S1446788700027932
J. C. Butcher, K. Burrage & F. H. Chipman, - J. R. Cash,
*Stable recursions*, Computational Mathematics and Applications, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York-Toronto, Ont., 1979. With applications to the numerical solution of stiff systems. MR**570113**
M. Crouzieux, - C. W. Gear,
*Runge-Kutta starters for multistep methods*, ACM Trans. Math. Software**6**(1980), no. 3, 263–279. MR**585338**, DOI 10.1145/355900.355901
A. C. Hindmarsh, - K. R. Jackson and R. Sacks-Davis,
*An alternative implementation of variable step-size multistep formulas for stiff ODEs*, ACM Trans. Math. Software**6**(1980), no. 3, 295–318. MR**585340**, DOI 10.1145/355900.355903
J. D. Lambert. Private communication, 1980.
- Bengt Lindberg,
*Characterization of optimal stepsize sequences for methods for stiff differential equations*, SIAM J. Numer. Anal.**14**(1977), no. 5, 859–887. MR**519728**, DOI 10.1137/0714058 - William Edmund Milne,
*Numerical solution of differential equations*, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR**0068321**
S. P. Nørsett, - A. Prothero and A. Robinson,
*On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations*, Math. Comp.**28**(1974), 145–162. MR**331793**, DOI 10.1090/S0025-5718-1974-0331793-2 - H. A. Watts and L. F. Shampine,
*$A$-stable block implicit one-step methods*, Nordisk Tidskr. Informationsbehandling (BIT)**12**(1972), 252–266. MR**307483**, DOI 10.1007/bf01932819 - Jack Williams and Frank de Hoog,
*A class of $A$-stable advanced multistep methods*, Math. Comp.**28**(1974), 163–177. MR**356519**, DOI 10.1090/S0025-5718-1974-0356519-8

*STRIDE*:

*Stable Runge-Kutta Integrator for Differential Equations*, Report No. 20, Dept. of Mathematics, University of Auckland, New Zealand, 1979. J. R. Cash, "Diagonally implicit Runge-Kutta formulae with error estimates,"

*J. Inst. Math. Appl.*, v. 24, 1979, pp. 293-301.

*Sur l’Approximation des équations Différentielles Opérationnelles Linéaires par des Méthodes de Runge-Kutta*, Ph.D. thesis, University of Paris, 1975.

*GEAR*:

*Ordinary Differential Equation System Solver*, Rep. UCID-30001, Rev. 3, Lawrence Livermore Laboratory, Livermore, Calif., 1974.

*Semi-Explicit Runge-Kutta Methods*, Mathematics and Computation, No. 6, University of Trondheim, 1974.

## Additional Information

- © Copyright 1983 American Mathematical Society
- Journal: Math. Comp.
**40**(1983), 193-206 - MSC: Primary 65L05
- DOI: https://doi.org/10.1090/S0025-5718-1983-0679440-X
- MathSciNet review: 679440