Modified multilag methods for Volterra functional equations
Author:
P. H. M. Wolkenfelt
Journal:
Math. Comp. 40 (1983), 301-316
MSC:
Primary 65R20
DOI:
https://doi.org/10.1090/S0025-5718-1983-0679447-2
MathSciNet review:
679447
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Linear multistep methods for ordinary differential equations in conjunction with a family of computationally efficient quadrature rules are employed to define a class of so-called multilag methods for the solution of Volterra integral and integro-differential equations. In addition, modified multilag methods are proposed which have the property that the stability behavior is independent of the choice of the quadrature rules. High order convergence of the methods is established. In particular, a special class of high order convergent methods is presented for the efficient solution of first-kind Volterra equations. Numerical experiments are reported.
- Celia Andrade and S. McKee, On optimal high accuracy linear multistep methods for first kind Volterra integral equations, BIT 19 (1979), no. 1, 1–11. MR 530109, DOI https://doi.org/10.1007/BF01931215
- Christopher T. H. Baker, The numerical treatment of integral equations, Clarendon Press, Oxford, 1977. Monographs on Numerical Analysis. MR 0467215
- Christopher T. H. Baker and Malcolm S. Keech, Stability regions in the numerical treatment of Volterra integral equations, SIAM J. Numer. Anal. 15 (1978), no. 2, 394–417. MR 502101, DOI https://doi.org/10.1137/0715025
- Christopher T. H. Baker, Athena Makroglou, and Edward Short, Regions of stability in the numerical treatment of Volterra integro-differential equations, SIAM J. Numer. Anal. 16 (1979), no. 6, 890–910. MR 551314, DOI https://doi.org/10.1137/0716066
- H. Brunner and J. D. Lambert, Stability of numerical methods for Volterra integro-differential equations, Computing (Arch. Elektron. Rechnen) 12 (1974), no. 1, 75–89 (English, with German summary). MR 418490, DOI https://doi.org/10.1007/bf02239501
- Charles J. Gladwin, Quadrature rule methods for Volterra integral equations of the first kind, Math. Comp. 33 (1979), no. 146, 705–716. MR 521284, DOI https://doi.org/10.1090/S0025-5718-1979-0521284-2
- C. J. Gladwin and R. Jeltsch, Stability of quadrature rule methods for first kind Volterra integral equations, Nordisk Tidskr. Informationsbehandling (BIT) 14 (1974), 144–151. MR 502108, DOI https://doi.org/10.1007/bf01932943
- Peter Henrici, Discrete variable methods in ordinary differential equations, John Wiley & Sons, Inc., New York-London, 1962. MR 0135729
- Wilhelm Hock, Asymptotic expansions for multistep methods applied to nonlinear Volterra integral equations of the second kind, Numer. Math. 33 (1979), no. 1, 77–100. MR 545744, DOI https://doi.org/10.1007/BF01396497
- P. A. W. Holyhead, S. McKee, and P. J. Taylor, Multistep methods for solving linear Volterra integral equations of the first kind, SIAM J. Numer. Anal. 12 (1975), no. 5, 698–711. MR 413564, DOI https://doi.org/10.1137/0712052
- P. J. van der Houwen, On the numerical solution of Volterra integral equations of the second kind. I. Stability, Mathematisch Centrum, Amsterdam, 1977. Mathematisch Centrum, Afdeling Numerieke Wiskunde, No. NW 42/77. [Mathematical Center, Numerical Mathematics Section, No. NW 42/77]. MR 0495061
- P. J. van der Houwen, Convergence and stability results in Runge-Kutta type methods for Volterra integral equations of the second kind, BIT 20 (1980), no. 3, 375–377. MR 595219, DOI https://doi.org/10.1007/BF01932780
- P. J. van der Houwen, P. H. M. Wolkenfelt, and C. T. H. Baker, Convergence and stability analysis for modified Runge-Kutta methods in the numerical treatment of second-kind Volterra integral equations, IMA J. Numer. Anal. 1 (1981), no. 3, 303–328. MR 641312, DOI https://doi.org/10.1093/imanum/1.3.303
- J. D. Lambert, Computational methods in ordinary differential equations, John Wiley & Sons, London-New York-Sydney, 1973. Introductory Mathematics for Scientists and Engineers. MR 0423815
- Peter Linz, Linear multistep methods for Volterra integro-differential equations, J. Assoc. Comput. Mach. 16 (1969), 295–301. MR 239786, DOI https://doi.org/10.1145/321510.321521
- J. Matthys, $A$-stable linear multistep methods for Volterra integro-differential equations, Numer. Math. 27 (1976/77), no. 1, 85–94. MR 436638, DOI https://doi.org/10.1007/BF01399087
- Malcolm S. Keech, A third order, semi-explicit method in the numerical solution of first kind Volterra integral equations, Nordisk Tidskr. Informationsbehandling (BIT) 17 (1977), no. 3, 312–320. MR 474918, DOI https://doi.org/10.1007/bf01932151
- P. H. M. Wolkenfelt, P. J. van der Houwen, and Chr. T. H. Baker, Analysis of numerical methods for second kind Volterra equations by imbedding techniques, J. Integral Equations 3 (1981), no. 1, 61–82. MR 604316
- P. H. M. Wolkenfelt, Reducible quadrature methods for Volterra integral equations of the first kind, BIT 21 (1981), no. 2, 232–241. MR 627884, DOI https://doi.org/10.1007/BF01933168
- P. H. M. Wolkenfelt, The construction of reducible quadrature rules for Volterra integral and integro-differential equations, IMA J. Numer. Anal. 2 (1982), no. 2, 131–152. MR 668589, DOI https://doi.org/10.1093/imanum/2.2.131
- P. H. M. Wolkenfelt, Reducible quadrature methods for Volterra integral equations of the first kind, BIT 21 (1981), no. 2, 232–241. MR 627884, DOI https://doi.org/10.1007/BF01933168
Retrieve articles in Mathematics of Computation with MSC: 65R20
Retrieve articles in all journals with MSC: 65R20
Additional Information
Keywords:
Numerical analysis,
Volterra integral and integro-differential equations,
multilag methods,
convergence and stability
Article copyright:
© Copyright 1983
American Mathematical Society