On the smallest such that all are composite

Author:
G. Jaeschke

Journal:
Math. Comp. **40** (1983), 381-384

MSC:
Primary 10A25; Secondary 10-04

DOI:
https://doi.org/10.1090/S0025-5718-1983-0679453-8

Corrigendum:
Math. Comp. **45** (1985), 637.

MathSciNet review:
679453

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we present some computational results which restrict the least odd value of *k* such that is composite for all to one of 91 numbers between 3061 and 78557,inclusive. Further, we give the computational results of a relaxed problem and prove for any positive integer *r* the existence of infinitely many odd integers *k* such that is prime but is not prime for .

**[1]**Robert Baillie, G. Cormack, and H. C. Williams,*The problem of Sierpiński concerning 𝑘⋅2ⁿ+1*, Math. Comp.**37**(1981), no. 155, 229–231. MR**616376**, https://doi.org/10.1090/S0025-5718-1981-0616376-2**[2]**N. S. Mendelsohn,*The equation 𝜙(𝑥)=𝑘*, Math. Mag.**49**(1976), no. 1, 37–39. MR**396385**, https://doi.org/10.2307/2689883**[3]**Oystein Ore, J. L. Selfridge, and P. T. Bateman,*Advanced Problems and Solutions: Solutions: 4995*, Amer. Math. Monthly**70**(1963), no. 1, 101–102. MR**1532000**, https://doi.org/10.2307/2312814**[4]**W. Sierpiński,*Sur un problème concernant les nombres 𝑘⋅2ⁿ+1*, Elem. Math.**15**(1960), 73–74 (French). MR**117201****[5]**R. G. Stanton & H. C. Williams,*Further Results on Coverings of the Integers**by Primes*, Lecture Notes in Math., vol. 884, Combinatorial Mathematics VIII, pp. 107-114, Springer-Verlag, Berlin and New York, 1980.

Retrieve articles in *Mathematics of Computation*
with MSC:
10A25,
10-04

Retrieve articles in all journals with MSC: 10A25, 10-04

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0679453-8

Article copyright:
© Copyright 1983
American Mathematical Society