Applications of a computer implementation of Poincaré's theorem on fundamental polyhedra

Author:
Robert Riley

Journal:
Math. Comp. **40** (1983), 607-632

MSC:
Primary 20H10; Secondary 11F06, 20-04, 22E40, 51M20, 57N10

DOI:
https://doi.org/10.1090/S0025-5718-1983-0689477-2

MathSciNet review:
689477

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Poincaré's Theorem asserts that a group of isometries of hyperbolic space is discrete if its generators act suitably on the boundary of some polyhedron in , and when this happens a presentation of can be derived from this action. We explain methods for deducing the precise hypotheses of the theorem from calculation in when is "algorithmically defined", and we describe a file of Fortran programs that use these methods for groups acting on the upper half space model of hyperbolic 3-space . We exhibit one modest example of the application of these programs, and we summarize computations of repesentations of groups where is an order in a complex quadratic number field.

**[1]**Lars V. Ahlfors,*Möbius transformations in several dimensions*, Ordway Professorship Lectures in Mathematics, University of Minnesota, School of Mathematics, Minneapolis, Minn., 1981. MR**725161****[2]**A. F. Beardon,*The geometry of discrete groups*, Discrete groups and automorphic functions (Proc. Conf., Cambridge, 1975), Academic Press, London, 1977, pp. 47–72. MR**0474012****[3]**Alan F. Beardon and Bernard Maskit,*Limit points of Kleinian groups and finite sided fundamental polyhedra*, Acta Math.**132**(1974), 1–12. MR**333164**, https://doi.org/10.1007/BF02392106**[4]**Luigi Bianchi,*Opere. Vol. I, Parte prima*, A cura dell’Unione Matematica Italiana e col contributo del Consiglio Nazionale delle Ricerche, Edizioni Cremonese della Casa Editrice Perrella, Roma, 1952 (Italian). MR**0051755****[5]**Harvey Cohn,*A second course in number theory*, John Wiley & Sons, Inc., New York-London, 1962. MR**0133281****[6]**Troels Jørgensen,*On discrete groups of Möbius transformations*, Amer. J. Math.**98**(1976), no. 3, 739–749. MR**427627**, https://doi.org/10.2307/2373814**[7]**Bernard Maskit,*On Poincaré’s theorem for fundamental polygons*, Advances in Math.**7**(1971), 219–230. MR**297997**, https://doi.org/10.1016/S0001-8708(71)80003-8**[8]**Robert Riley,*A quadratic parabolic group*, Math. Proc. Cambridge Philos. Soc.**77**(1975), 281–288. MR**412416**, https://doi.org/10.1017/S0305004100051094**[9]**Robert Riley,*Discrete parabolic representations of link groups*, Mathematika**22**(1975), no. 2, 141–150. MR**425946**, https://doi.org/10.1112/S0025579300005982**[10]**Robert Riley,*An elliptical path from parabolic representations to hyperbolic structures*, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977) Lecture Notes in Math., vol. 722, Springer, Berlin, 1979, pp. 99–133. MR**547459****[11]**R. Riley,*Seven excellent knots*, Low-dimensional topology (Bangor, 1979) London Math. Soc. Lecture Note Ser., vol. 48, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 81–151. MR**662430****[12]**Herbert Seifert,*Komplexe mit Seitenzuordnung*, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II**6**(1975), 49–80 (German). MR**0383219****[13]**J. Sommer,*Introduction à la Théorie des Nombres Algébriques*, Paris, 1911.**[14]**Richard G. Swan,*Generators and relations for certain special linear groups*, Advances in Math.**6**(1971), 1–77 (1971). MR**284516**, https://doi.org/10.1016/0001-8708(71)90027-2**[15]**W. Thurston,*The geometry and topology of*3-*manifolds*. (To appear.)

Retrieve articles in *Mathematics of Computation*
with MSC:
20H10,
11F06,
20-04,
22E40,
51M20,
57N10

Retrieve articles in all journals with MSC: 20H10, 11F06, 20-04, 22E40, 51M20, 57N10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1983-0689477-2

Keywords:
Poincaré's Theorem on fundamental polyhedra,
fundamental domain,
discrete group,
group presentation,
Kleinian group,
Bianchi group,
hyperbolic space

Article copyright:
© Copyright 1983
American Mathematical Society