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Irregular Sets of Integers

Generated by the Greedy Algorithm

By Joseph L. Gerver

Abstract. The greedy algorithm was used to generate sets of positive integers containing no

subset of the form {x, x + y, x + 2y), {x, x + y, x + 3y), {x, x + 2y, x + 3y), {x, x +

2y, x + 4y), {x, x + 3y, x + 5y), and {x, x + y, x + 2y, x + 3y}, respectively. All of these

sets have peaks of density in roughly geometric progression.

In 1936, Erdös and Turan [1], in connection with the question of whether there

exist arbitrarily long sequences of primes in arithmetic progression, conjectured that

if the sum of the reciprocals of an infinite set of positive integers diverges, then the

set must contain arbitrarily long sequences of elements in arithmetic progression.

This conjecture, still unsettled, led to attempts over the years to construct denser and

denser sets of integers containing no k elements in arithmetic progression, for

various fixed values of k.

The earliest such construction, due to Szekeres, was actually mentioned by Erdos

and Turan [1] in their original paper. Szekeres considered the case where k is prime;

his set Sk consisted of all nonnegative integers which do not include the digit k — 1

when written in the base k. Although Rankin [6] later constructed examples with

greater asymptotic density, Szekeres's sets (when each element is increased by one, to

avoid dividing by zero) still hold the record for the sum of the reciprocals of a set of

positive integers with no arithmetic progression of k terms; see Gerver [2].

Szekeres's sets are generated by the greedy algorithm. That is, n E Sk if and only

if (5^ D [0, n — 1]) U {n} contains no k elements in arithmetic progression (where

[0, n — 1] is the set of integers from 0 through n — 1). In 1979, Gerver and Ramsey

[3] considered the sets Sk generated by the greedy algorithm in this manner, in the

case where k is composite. We computed thousands of elements of 54 and 56 and

found them to be distributed quite randomly, on a local scale, in contrast to the very

regular pattern of Szekeres's sets. We also presented a heuristic argument, supported

by the computations, that the number of elements of Sk less than n (k composite)

should be asymptotically proportional to n(k~2)/(-k~X)(logn)x/(k~l). This argument

hinged on the assumption that the elements of Sk were truly random, in some sense,

and that the density of 5^ in the vicinity of x could be approximated by a function

<p(;c) with the following property: There exists a constant p, 0 < p < 1, such that,

for every c > 1, hrn^..^ <p(cx)/q>(x) — c~p. (It was erroneously stated in [3] that this

follows from the weaker property that limx^M log <¡p(x)/log x = -p.)
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At about the same time, Odlyzko and Stanley [4] considered the case where k = 3,

but the greedy algorithm applies only starting with the third element of the set, the

first element being 0, and the second element, a2, being arbitrary. They observed

that when a2 was a power of three or twice a power of three, the set closely

resembled Szekeres's set 53; these sets they called regular. The remaining sets, called

irregular, appeared to be quite random for the first few hundred elements, like the

sets 54 and 56. Odlyzko and Stanley conjectured that, for irregular sets, the number

of elements less than n should be asymptotically proportional to «1/2(logn)1/2,

using essentially the same heuristic argument as in [3].

Later Odlyzko [5] computed the first irregular set, with a2 = 4, up to several

thousand elements. Far from decreasing smoothly, the density of this set oscillated

up and down, with a sequence of peaks and valleys in roughly geometric progression.

Figure 1 shows the number of elements of this set in consecutive intervals of 10000,

up to 2.55 X 106 (i.e. 255 intervals of 10000; actually the first interval, here and in

the other figures, has length 9999).

The ratio between two consecutive peaks in the density of this set is approximately

2.5. Odlyzko conjectured that this ratio should tend to <¡>2 = 2.618..., where <|> =

(1 + 1/5 )/2 is the golden ratio. Indeed, let r2 be the ratio between successive peaks,

and assume that each valley is at the geometric mean of the peaks on either side.

Then two adjacent peaks and the following valley will be in the ratio 1 : r2 : r3. If

these three numbers are in arithmetic progression, then the two peaks will tend to

reinforce the valley; likewise, to a lesser extent, two adjacent valleys will tend to

reinforce the following peak. But r > 1 and r3 — r2 = r2 — lif and only if r = 4>.

An arithmetic progression of three terms is a set of the form {x, x + y, x + 2y}.

In order to test Odlyzko's conjecture, the greedy algorithm was used to generate sets

of positive integers containing no subset of the form {x, x + y, x + 3y}, {x, x +

2y, x + 3y), {x, x + 3y, x + 4y}, and {x, x + 3y, x + 5y}, respectively. The dis-

tribution of the elements of these four sets (that is, the number of elements in

consecutive intervals of 10000) is shown in Figures 2,3,4, and 5, respectively. All of

these sets appear to be irregular, in the sense that they have no simple nonrecursive

definition, in terms of the digits of their elements in some base. It would be

interesting to know whether any of these sets can be made regular by delaying the

application of the greedy algorithm.

Table 1 compares some predicted and observed numbers associated with these

sets. Equation 1 is derived by letting two successive peaks and the following valley

(assumed to be in the ratio 1 : r2 : r3) form the pattern of the avoided subset. This

equation always has the root 1. Of the two remaining roots, one must be positive and

one negative; the former is used to compute the ratio r2 which follows equation 1. In

the cases where the avoided subset is {x, x + 2y, x + 3y} and {x, x + 3y, x + 4y},

we have r2 < 1, which is meaningless when interpreted as the ratio of successive

peaks. If instead of taking two successive peaks, we skip a peak, so the two peaks

and the following valley are in the ratio 1 : r4 : r5, and we let these peaks and valley

form the pattern of the avoided subset, we then obtain equation 2. This equation

also has the root r—\, and one other positive root from which we can compute r2.

The observed ratio between successive peaks was computed not from the positions

of the peaks themselves, but from the positions of the ascending midpoints, defined
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Table 1

Avoided subset: x, x + y, x + 2y       (Figure 1)

Equation 1: r3 - r2 = r2 - 1,       r2 = 2.62

Ascending midpoints: 12        31         79      195

Ratios: 2.58     2.55      2.47      (2.53 ± .03)
Number of elements: 1179     1991     3266      5405

Ratios: 1.69      1.64     .1.65      (1.66 ± .01)

Exponent: .546

Avoided subset: x, x + y, x + 3y          (Figure 2)

Equation 1: r3 - r2 = 2(r2 - 1),    r2 = 7.46

Ascending midpoints: 16        67   260

Ratios: 4.19     3.88   (4.03 ± .16)
Number of elements 1652    3352    7036

Ratios: 2.03     2.10   (2.06 ± .04)
Exponent: .519

Avoided subset: x, x + 2y, x + 3y       (Figure 3)

Equation I: 2(r3 - r2) = r2 - 1,   r2 = 1.00

Equation 2: 2(r5 - r4) = r* - 1,   r2 = 1.82

Ascending midpoints: 11         19         32        56        95      164   279

Ratios: 1.73      1.68      1.75      1.70      1.73      1.70   (1.71 ± .01)

Number of elements 1526    2055     2766    3734    5048    6823    9174

Ratios: 1.347    1.346     1.350    1.352    1.352    1.345   (1.349 ±.001)
Exponent: .555

Avoided subset: x, x + 3y, x + 4y       (Figure 4)

Equation 1: 3(r3 - r2) = r2 - 1,    r2 = 0.59

Equation 2: 3(r5 - r4) = r4 - 1,    r2 = 1.27

Ascending midpoints: 9      13.5       20        29        42        62   91

Ratios: 1.50      1.48     1.45      1.45      1.48      1.47   (1.47 ± .01)
Number of elements: 1631     2015   2500    3117    3840    4743    5913

Ratios: 1.235    1.241   1.247    1.232    1.235    1.247   (1.239 ± .003)
Exponent: .556

Avoided subset: x, x + 3y, x + 5y             (Figure 5)

Equation 1: 3(r3 - r2) = 2(r2 - 1),    r2 = 1.48

Ascending midpoints: 10        14       21        29        41        59   82

Ratios: 1.40      1.50     1.38      1.41      1.44     1.39   (1.42 ±.02)
Number of elements: 1890    2306    2881     3434    4187    5038   6119

Ratios: 1.22      1.25     1.19      1.22      1.20     1.22   (1.22 ±.01)
Exponent: .558

to be the point before each peak at which the density has a value midway between

that of the peak and that of the previous valley. The positions of the ascending

midpoints are given in units of 10000, and are estimated by eye in those cases where

there is some ambiguity. The ascending midpoint was chosen, rather than the

descending midpoint, because of the empirical fact that, for all five sets, the density

function rises faster than it falls during each cycle. This means that the valleys are

not located at the geometric mean of the two adjacent peaks, but closer to the

following peak. Below the position of each ascending midpoint is listed the ratio of

the next position to that position;-these ratios are followed, in parentheses, by their

mean ¡u, and the standard deviation of their mean. Next is listed the number of

elements in the set up to the valley immediately before each ascending midpoint,

followed by the ratios of these numbers, and the mean ¡u2 and standard deviation of

the mean of these ratios. Finally, we compute the exponent log ii2/logix,; this is,

roughly speaking, the power of n which approximates the number of elements less

than n.
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Figure 4

In all cases, the observed exponent agrees well with the conjecture that the

number of elements less than n is roughly proportional to «1/2(log «)1/2. As n tends

to infinity, the exponent should approach 1/2, but in this region, where log n is on

the order of 12.5, the exponent should be about (1/2)[1 + (1/12.5)] = .54.

On the other hand, it is evident that equations 1 and 2 are not of much help in

predicting the ratio of successive density peaks.
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Figure 5

An alternative hypothesis is that each valley is caused by the previous peak acting

in concert with the dense region at the beginning of the set. Thus if {x, x + by, x +

cy) is the avoided subset, a valley should appear at c/b times the position of each

peak, and the next peak should occur shortly afterwards. For all the sets except the

one in Figure 5, this model seems to fit, with the ratio between successive peaks

approximately 1 + (3/2)[(c/Z>) — 1]. In Figure 5, this number is very close to the

square of the ratio between successive peaks, so it is possible that in this case the

fundamental frequency is actually half of what is appears to be, and the first

harmonic is unusually strong for some reason.
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Figure 6

Whatever the precise mechanism may be which gives rise to the peaks and valleys,

one might expect the following to be true for all sets 5 generated by the greedy

algorithm in this manner.

Conjecture. For each set 5, there exists a real number a, 0 < a < l, and a

function g, where lim^^ g(u) = oo, such that, for each real number v, there exists

fv = lim 2        rt-Vlo&"/        2        n~

U<M*E« + g(u) U*S««U + g(«)

One might strengthen this conjecture to state that /„ = 0 except for a discrete set

of v; one might even speculate that this discrete set always consists of all the integral

multiplies of a single fundamental frequency, characteristic of 5. Indeed, this

last version of the conjecture is true for Szekeres's original sets, where a =

log(k — l)/log k, and the fundamental frequency is log k.

In support of the generality of this conjecture, note the presence of peaks and

valleys in geometric progression in the set of positive integers with no arithmetic

progression of four terms, generated by the greedy algorithm (Figure 6; as usual the

horizontal scale is in intervals of 10000).

All of the computations for this paper were done on a CDC Cyber 18/30. This

machine was not ideal for the task, being relatively small and slow; its principal

advantage was that I could use it for free on nights and weekends. I would like to

thank H. Pritchett and E. R. Canfield for making this arrangement possible. I would

also like to thank R. Chambers, who wrote two critical subroutines, one to replace
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the Standard FORTRAN WRITE routine (thus freeing enough memory to compute

an additional 6000 elements of each set), and the other to store the array of elements

on a disc when other people were using the machine (making some long computa-

tions possible; for example, Figure 3 required 72 hours of CPU time).
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