Analysis of mixed finite elements methods for the Stokes problem: a unified approach

Author:
Rolf Stenberg

Journal:
Math. Comp. **42** (1984), 9-23

MSC:
Primary 76-08; Secondary 76D07

DOI:
https://doi.org/10.1090/S0025-5718-1984-0725982-9

MathSciNet review:
725982

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We develop a method for the analysis of mixed finite element methods for the Stokes problem in the velocity-pressure formulation. A technical "macroelement condition", which is sufficient for the classical Babuška-Brezzi inequality to be valid, is introduced. Using this condition,we are able to verify the stability, and optimal order of convergence, of several known mixed finite element methods.

**[1]**Ivo Babuška,*The finite element method with Lagrangian multipliers*, Numer. Math.**20**(1972/73), 179–192. MR**359352**, https://doi.org/10.1007/BF01436561**[2]**M. Bercovier,*Perturbation of mixed variational problems. Application to mixed finite element methods*, RAIRO Anal. Numér.**12**(1978), no. 3, 211–236, iii (English, with French summary). MR**509973**, https://doi.org/10.1051/m2an/1978120302111**[3]**Michel Bercovier and Michael Engelman,*A finite element for the numerical solution of viscous incompressible flows*, J. Comput. Phys.**30**(1979), no. 2, 181–201. MR**528199**, https://doi.org/10.1016/0021-9991(79)90098-6**[4]**M. Bercovier and O. Pironneau,*Error estimates for finite element method solution of the Stokes problem in the primitive variables*, Numer. Math.**33**(1979), no. 2, 211–224. MR**549450**, https://doi.org/10.1007/BF01399555**[5]**F. Brezzi,*On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge**8**(1974), no. no. , no. R-2, 129–151 (English, with French summary). MR**365287****[6]**Philippe G. Ciarlet,*The finite element method for elliptic problems*, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR**0520174****[7]**P. G. Ciarlet and P.-A. Raviart,*Interpolation theory over curved elements, with applications to finite element methods*, Comput. Methods Appl. Mech. Engrg.**1**(1972), 217–249. MR**375801**, https://doi.org/10.1016/0045-7825(72)90006-0**[8]**Ph. Clément,*Approximation by finite element functions using local regularization*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér.**9**(1975), no. R-2, 77–84 (English, with Loose French summary). MR**0400739****[9]**M. Crouzeix and P.-A. Raviart,*Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge**7**(1973), no. no. , no. R-3, 33–75. MR**343661****[10]**M. S. Engelman, R. L. Sani, P. M. Gresho, and M. Bercovier,*Consistent vs. reduced integration penalty methods for incompressible media using several old and new elements*, Internat. J. Numer. Methods Fluids**2**(1982), no. 1, 25–42. MR**643172**, https://doi.org/10.1002/fld.1650020103**[11]**V. Girault and P.-A. Raviart,*Finite element approximation of the Navier-Stokes equations*, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, Berlin-New York, 1979. MR**548867****[12]**P. Hood & C. Taylor, "Navier-Stokes equations using mixed interpolation,"*Finite Element Methods in Flow Problems*(J. T. Oden. ed.), UAH Press, Huntsville, Alabama, 1974, pp. 121-131.**[13]**Thomas J. R. Hughes, Wing Kam Liu, and Alec Brooks,*Finite element analysis of incompressible viscous flows by the penalty function formulation*, J. Comput. Phys.**30**(1979), no. 1, 1–60. MR**524162**, https://doi.org/10.1016/0021-9991(79)90086-X**[14]**P. Huyakorn. C. Taylor, R. Lee & P. Gresho, "A comparison of various mixed-interpolation finite elements for the Navier-Stokes equations,"*Comput. & Fluids*, v. 6, 1978, pp. 25-35.**[15]**Claes Johnson and Juhani Pitkäranta,*Analysis of some mixed finite element methods related to reduced integration*, Math. Comp.**38**(1982), no. 158, 375–400. MR**645657**, https://doi.org/10.1090/S0025-5718-1982-0645657-2**[16]**P. Le Tallec,*Compatibility condition and existence results in discrete finite incompressible elasticity*, Comput. Methods Appl. Mech. Engrg.**27**(1981), no. 2, 239–259. MR**629739**, https://doi.org/10.1016/0045-7825(81)90151-1**[17]**D. Malkus & T. J. Hughes, "Mixed finite element methods--reduced and selective integration techniques: a unification of concepts,"*Comput. Mehtods Appl. Mech. Engrg.*, v. 15, 1978, pp. 63-81.**[18]**Lois Mansfield,*Finite element subspaces with optimal rates of convergence for the stationary Stokes problem*, RAIRO Anal. Numér.**16**(1982), no. 1, 49–66 (English, with French summary). MR**648745****[19]**Juhani Pitkäranta,*On a mixed finite element method for the Stokes problem in 𝑅³*, RAIRO Anal. Numér.**16**(1982), no. 3, 275–291 (English, with French summary). MR**672419****[20]**J. Pitkäranta and R. Stenberg,*Analysis of some mixed finite element methods for plane elasticity equations*, Math. Comp.**41**(1983), no. 164, 399–423. MR**717693**, https://doi.org/10.1090/S0025-5718-1983-0717693-X**[21]**R. L. Sani, P. M. Gresho, R. L. Lee, and D. F. Griffiths,*The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations. I*, Internat. J. Numer. Methods Fluids**1**(1981), no. 1, 17–43. MR**608691**, https://doi.org/10.1002/fld.1650010104**[22]**R. Stenberg,*Mixed Finite Element Methods for Two Problems in Elasticity Theory and Fluid Mechanics*, Licentiate thesis, Helsinki University of Technology, 1981.**[23]**R. Verfürt,*Error Estimates for a Mixed Finite Element Approximation of the Stokes Equations*, Ruhr-Universität Bochum, 1982. (Preprint.)

Retrieve articles in *Mathematics of Computation*
with MSC:
76-08,
76D07

Retrieve articles in all journals with MSC: 76-08, 76D07

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1984-0725982-9

Article copyright:
© Copyright 1984
American Mathematical Society