On optimal shooting intervals
HTML articles powered by AMS MathViewer
 by R. M. M. Mattheij and G. W. M. Staarink PDF
 Math. Comp. 42 (1984), 2540 Request permission
Abstract:
We develop an adaptive multiple shooting strategy, which is nearly optimal with respect to cpu time. Since the costs of integration are the most important components in this, we investigate in some detail how the gridpoints are chosen by an adaptive integration routine. We use this information to find out where the shooting points have to be selected. We also show that our final strategy is stable in the sense that rounding errors can be kept below a given tolerance. Finally we pay attention to the question how the need for memory can be minimized.References

B. Childs (ed.), Codes for BoundaryValue Problems in Ordinary Equations, Lecture Notes in Comput. Sci., Vol. 76, SpringerVerlag, Berlin, 1978.
 P. Deuflhard, Recent advances in multiple shooting techniques, Computational techniques for ordinary differential equations (Proc. Conf. Univ. Manchester, Manchester, 1978) Academic Press, LondonNew YorkToronto, Ont., 1980, pp. 217–272. MR 582979
 H.J. Diekhoff, P. Lory, H.J. Oberle, H.J. Pesch, P. Rentrop, and R. Seydel, Comparing routines for the numerical solution of initial value problems of ordinary differential equations in multiple shooting, Numer. Math. 27 (1976/77), no. 4, 449–469. MR 445845, DOI 10.1007/BF01399607
 S. D. Conte, The numerical solution of linear boundary value problems, SIAM Rev. 8 (1966), 309–321. MR 203945, DOI 10.1137/1008063
 George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler, Computer methods for mathematical computations, PrenticeHall Series in Automatic Computation, PrenticeHall, Inc., Englewood Cliffs, N.J., 1977. MR 0458783
 John H. George and Robert W. Gunderson, Conditioning of linear boundary value problems, Nordisk Tidskr. Informationsbehandling (BIT) 12 (1972), 172–181. MR 309317, DOI 10.1007/bf01932811
 J. Kautský and N. K. Nichols, Equidistributing meshes with constraints, SIAM J. Sci. Statist. Comput. 1 (1980), no. 4, 499–511. MR 610760, DOI 10.1137/0901036
 Herbert B. Keller, Numerical solution of two point boundary value problems, Regional Conference Series in Applied Mathematics, No. 24, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. MR 0433897
 R. M. M. Mattheij, The conditioning of linear boundary value problems, SIAM J. Numer. Anal. 19 (1982), no. 5, 963–978. MR 672571, DOI 10.1137/0719070
 R. M. M. Mattheij, Estimates for the errors in the solutions of linear boundary value problems, due to perturbations, Computing 27 (1981), no. 4, 299–318 (English, with German summary). MR 643401, DOI 10.1007/BF02277181
 R. M. M. Mattheij, Accurate estimates for the fundamental solutions of discrete boundary value problems, J. Math. Anal. Appl. 101 (1984), no. 2, 444–464. MR 748581, DOI 10.1016/0022247X(84)901124 R. M. M. Mattheij & G. W. M. Staarink, "An efficient algorithm for solving general linear two point boundary value problems," SIAM J. Sci. Statist. Comput., v. 4, 1983.
 M. R. Osborne, The stabilized march is stable, SIAM J. Numer. Anal. 16 (1979), no. 6, 923–933. MR 551316, DOI 10.1137/0716068
 V. Pereyra and E. G. Sewell, Mesh selection for discrete solution of boundary problems in ordinary differential equations, Numer. Math. 23 (1974/75), 261–268. MR 464600, DOI 10.1007/BF01400309
 R. D. Russell and J. Christiansen, Adaptive mesh selection strategies for solving boundary value problems, SIAM J. Numer. Anal. 15 (1978), no. 1, 59–80. MR 471336, DOI 10.1137/0715004
 Melvin R. Scott and Herman A. Watts, Computational solution of linear twopoint boundary value problems via orthonormalization, SIAM J. Numer. Anal. 14 (1977), no. 1, 40–70. MR 455425, DOI 10.1137/0714004
 L. F. Shampine, H. A. Watts, and S. M. Davenport, Solving nonstiff ordinary differential equations—the state of the art, SIAM Rev. 18 (1976), no. 3, 376–411. MR 413522, DOI 10.1137/1018075
 Josef Stoer and Roland Bulirsch, Einführung in die Numerische Mathematik. II, Heidelberger Taschenbücher, Band 114, SpringerVerlag, BerlinNew York, 1973. Unter Berücksichtigung von Vorlesungen von F. L. Bauer. MR 0400617
Additional Information
 © Copyright 1984 American Mathematical Society
 Journal: Math. Comp. 42 (1984), 2540
 MSC: Primary 65L10
 DOI: https://doi.org/10.1090/S00255718198407259830
 MathSciNet review: 725983