Approximation of complex harmonic functions by complex harmonic splines
HTML articles powered by AMS MathViewer
- by Han Lin Chen and Tron Hvaring PDF
- Math. Comp. 42 (1984), 151-164 Request permission
Abstract:
In this paper, a class of complex harmonic spline functions (C.H.S.) are defined on the unit disc U. We use the C.H.S. to approximate the complex harmonic function on U, showing that C.H.S. may be represented by elementary functions. If the maximum step tends to zero and the mesh ratio is bounded, then C.H.S. converge uniformly to the interpolated function F on the closed disc Ū. If the interpolated function F is a conformal mapping, then the C.H.S. is a quasi-conformal mapping.References
- J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, Complex cubic splines, Trans. Amer. Math. Soc. 129 (1967), 391–413. MR 217484, DOI 10.1090/S0002-9947-1967-0217484-X
- J. H. Ahlberg, Splines in the complex plane, Approximations with Special Emphasis on Spline Functions (Proc. Sympos. Univ. of Wisconsin, Madison, Wis., 1969) Academic Press, New York, 1969, pp. 1–27. MR 0257614 Chen Han-Lin, Complex Harmonic Splines, Interpolation and Approximation on the Unit Circle, Part II, Tech. Report, Math. and Comp. No. 3/81, ISBN 82-7151-039-8.
- Han Lin Chen, Complex spline functions, Sci. Sinica 24 (1981), no. 2, 160–169. MR 626312 Chen Han-Lin & Tron Hvaring, A New Method for the Approximation of Conformal Mapping on the Unit Circle, Tech. Report, Math. and Comp. No. 6/82, ISBN 82-7151-049-5. L. Fejér, "Über Interpolation," Göttingen Nachr, 1916, pp. 66-91.
- Dieter Gaier, Integralgleichungen erster Art und konforme Abbildung, Math. Z. 147 (1976), no. 2, 113–129. MR 396926, DOI 10.1007/BF01164277
- M. A. Lawrentjew and B. W. Schabat, Methoden der komplexen Funktionentheorie, Mathematik für Naturwissenschaft und Technik, Band 13, VEB Deutscher Verlag der Wissenschaften, Berlin, 1967 (German). Übersetzung und wissenschaftliche Redaktion von Udo Pirl, Reiner Kühnau und Lothar Wolfersdorf. MR 0209447 L. Reichel, On Polynomial Approximation in the Complex Plane with Application to Conformal Mapping, TRITA-Na-8102, Dept. Comput. Sci., Royal Institute of Technology, Stockholm. L. Reichel, On the Determination of Boundary Collocation Points for Solving some Problems for the Laplace Operator, TRITA-NA-8006, Dept. Comput. Sci., Royal Institute of Technology, Stockholm.
- A. Sharma and A. Meir, Degree of approximation of spline interpolation, J. Math. Mech. 15 (1966), 759–767. MR 0194800
- M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894
Additional Information
- © Copyright 1984 American Mathematical Society
- Journal: Math. Comp. 42 (1984), 151-164
- MSC: Primary 30C30; Secondary 30E10, 41A15
- DOI: https://doi.org/10.1090/S0025-5718-1984-0725990-8
- MathSciNet review: 725990