A termination criterion for iterative methods used to find the zeros of polynomials
HTML articles powered by AMS MathViewer
- by Masao Igarashi PDF
- Math. Comp. 42 (1984), 165-171 Request permission
Abstract:
A new criterion for terminating iterations when searching for polynomial zeros is described. This method does not depend on the number of digits in the mantissa; moreover, it can be used to determine the accuracy of the resulting zeros. Examples are included.References
- Shin-ichiro Yamashita and Seiya Satake, On the calculation limit of roots of algebraic equations, Information Processing in Japan 7 (1967), 18–23. MR 235724 S. Hirano, Numerical Solution of Algebraic Equations by Floating-Point Arithmetic, Thesis, Nihon Univ., 1980.
- G. Peters and J. H. Wilkinson, Practical problems arising in the solution of polynomial equations, J. Inst. Math. Appl. 8 (1971), 16–35. MR 298931
- Masao Igarashi, Zeros of polynomial and an estimation of its accuracy, J. Inform. Process. 5 (1982), no. 3, 172–175. MR 686680
- Immo O. Kerner, Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen, Numer. Math. 8 (1966), 290–294 (German). MR 203931, DOI 10.1007/BF02162564
- Oliver Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comp. 27 (1973), 339–344. MR 329236, DOI 10.1090/S0025-5718-1973-0329236-7
- Brian T. Smith, Error bounds for zeros of a polynomial based upon Gerschgorin’s theorems, J. Assoc. Comput. Mach. 17 (1970), 661–674. MR 279998, DOI 10.1145/321607.321615
Additional Information
- © Copyright 1984 American Mathematical Society
- Journal: Math. Comp. 42 (1984), 165-171
- MSC: Primary 65H05; Secondary 65G99
- DOI: https://doi.org/10.1090/S0025-5718-1984-0725991-X
- MathSciNet review: 725991