Odd triperfect numbers
HTML articles powered by AMS MathViewer
- by Masao Kishore PDF
- Math. Comp. 42 (1984), 231-233 Request permission
Abstract:
We prove that an odd triperfect number has at least ten distinct prime factors.References
- Wayne McDaniel, On odd multiply perfect numbers, Boll. Un. Mat. Ital. (4) 3 (1970), 185–190. MR 0262154
- Graeme L. Cohen, On odd perfect numbers. II. Multiperfect numbers and quasiperfect numbers, J. Austral. Math. Soc. Ser. A 29 (1980), no. 3, 369–384. MR 569525
- Walter E. Beck and Rudolph M. Najar, A lower bound for odd triperfects, Math. Comp. 38 (1982), no. 157, 249–251. MR 637303, DOI 10.1090/S0025-5718-1982-0637303-9
- Masao Kishore, Odd integers $N$ with five distinct prime factors for which $2-10^{-12}<\sigma (N)/N<2+10^{-12}$, Math. Comp. 32 (1978), no. 141, 303–309. MR 485658, DOI 10.1090/S0025-5718-1978-0485658-X
Additional Information
- © Copyright 1984 American Mathematical Society
- Journal: Math. Comp. 42 (1984), 231-233
- MSC: Primary 11A25
- DOI: https://doi.org/10.1090/S0025-5718-1984-0725999-4
- MathSciNet review: 725999