On zeros of Mellin transforms of cusp forms
Authors:
H. R. P. Ferguson, R. D. Major, K. E. Powell and H. G. Throolin
Journal:
Math. Comp. 42 (1984), 241-255
MSC:
Primary 11F66; Secondary 11R42
DOI:
https://doi.org/10.1090/S0025-5718-1984-0726002-2
MathSciNet review:
726002
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We compute zeros of Mellin transforms of modular cusp forms for . Such Mellin transforms are eigenforms of Hecke operators. We recall that, for all weights k and all dimensions of cusp forms, the Mellin transforms of cusp forms have infinitely many zeros of the form
, i.e., infinitely many zeros on the critical line. A new basis theorem for the space of cusp forms is given which, together with the Selberg trace formula, renders practicable the explicit computations of the algebraic Fourier coefficients of cusp eigenforms required for the computations of the zeros. The first forty of these Mellin transforms corresponding to cusp eigenforms of weight
and dimension
are computed for the sections of the critical strips,
,
,
. The first few zeros lie on the respective critical lines
and are simple. A measure argument, depending upon the Riemann hypothesis for finite fields, is given which shows that Hasse-Weil L-functions (including the above) lie among Dirichlet series which do satisfy Riemann hypotheses (but which need not have functional equations nor analytic continuations).
- [1] M. Abramowitz & I. A. Stegun, Handbook of Mathematical Functions, Dover, New York. 1965, P. J. Davis, Section 6: Gamma Function and Related Functions.
- [2] Pierre Barrucand, Sur certaines séries de Dirichlet, C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A294–A296 (French). MR 246832
- [3] Patrick Billingsley, Probability and measure, John Wiley & Sons, New York-Chichester-Brisbane, 1979. Wiley Series in Probability and Mathematical Statistics. MR 534323
- [4] Richard P. Brent, On the zeros of the Riemann zeta function in the critical strip, Math. Comp. 33 (1979), no. 148, 1361–1372. MR 537983, https://doi.org/10.1090/S0025-5718-1979-0537983-2
- [5] Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258
- [6] L. E. Dickson, History of the Theory of Numbers, Vol. III, Quadratic and Higher Forms, Chelsea, New York, 1952.
- [7] Michel Duflo and Jean-Pierre Labesse, Sur la formule des traces de Selberg, Ann. Sci. École Norm. Sup. (4) 4 (1971), 193–284. MR 437462
- [8] Martin Eichler, On the class of imaginary quadratic fields and the sums of divisors of natural numbers, J. Indian Math. Soc. (N.S.) 19 (1955), 153–180 (1956). MR 80769
- [9] L. J. Goldstein, A necessary and sufficient condition for the Riemann hypothesis for zeta functions attached to eigenfunctions of the Hecke operators, Acta Arith. 15 (1968/69), 205–215. MR 245519, https://doi.org/10.4064/aa-15-3-205-215
- [10] R. C. Gunning, Lectures on modular forms, Notes by Armand Brumer. Annals of Mathematics Studies, No. 48, Princeton University Press, Princeton, N.J., 1962. MR 0132828
- [11] E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung. I, Math. Ann. 114 (1937), no. 1, 1–28 (German). MR 1513122, https://doi.org/10.1007/BF01594160
- [12] Peter Henrici, Applied and computational complex analysis. Vol. 2, Wiley Interscience [John Wiley & Sons], New York-London-Sydney, 1977. Special functions—integral transforms—asymptotics—continued fractions. MR 0453984
- [13] James L. Hafner, On the zeros of Dirichlet series associated with certain cusp forms, Bull. Amer. Math. Soc. (N.S.) 8 (1983), no. 2, 340–342. MR 684904, https://doi.org/10.1090/S0273-0979-1983-15111-X
- [14] Yasutaka Ihara, Hecke Polynomials as congruence 𝜁 functions in elliptic modular case, Ann. of Math. (2) 85 (1967), 267–295. MR 207655, https://doi.org/10.2307/1970442
- [15] Nicholas M. Katz, An overview of Deligne’s proof of the Riemann hypothesis for varieties over finite fields, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, Ill., 1974) Amer. Math. Soc., Providence, R.I., 1976, pp. 275–305. MR 0424822
- [16] A. Kolmogorov, "Über die Summen durch den Zufall bestimmter unabhängiger Grössen," Math. Ann., v. 99, 1928, pp. 309-319; "Bemerkungen zu meiner Arbeit über die Summen zufälligen Grossen." Math. Ann., v. 102, 1929, pp. 484-488.
- [17] Michio Kuga and Goro Shimura, On the zeta function of a fibre variety whose fibres are abelian varieties, Ann. of Math. (2) 82 (1965), 478–539. MR 184942, https://doi.org/10.2307/1970709
- [18] J. C. Lagarias and A. M. Odlyzko, On computing Artin 𝐿-functions in the critical strip, Math. Comp. 33 (1979), no. 147, 1081–1095. MR 528062, https://doi.org/10.1090/S0025-5718-1979-0528062-9
- [19] Serge Lang, Introduction to modular forms, Springer-Verlag, Berlin-New York, 1976. Grundlehren der mathematischen Wissenschaften, No. 222. MR 0429740
- [20] R. P. Langlands, Problems in the theory of automorphic forms, Lectures in modern analysis and applications, III, Springer, Berlin, 1970, pp. 18–61. Lecture Notes in Math., Vol. 170. MR 0302614
- [21] D. H. Lehmer, Ramanujan’s function 𝜏(𝑛), Duke Math. J. 10 (1943), 483–492. MR 8619
- [22] D. H. Lehmer, Some functions of Ramanujan, Math. Student 27 (1959), 105–116. MR 131412
- [23] P. Lévy, "Sur les séries dont les termes sont des variables éventuelles indépendantes," Studia Math., v. 3, 1931, pp. 119-155.
- [24] Carlos Julio Moreno, A necessary and sufficient condition for the Riemann hypothesis for Ramanujan’s zeta function, Illinois J. Math. 18 (1974), 107–114. MR 0330071
- [25] C. J. Moreno, Explicit formulas in the theory of automorphic forms, Number Theory Day (Proc. Conf., Rockefeller Univ., New York, 1976), Springer, Berlin, 1977, pp. 73–216. Lecture Notes in Math., Vol. 626. MR 0476650
- [26] Michael A. Morrison and John Brillhart, A method of factoring and the factorization of 𝐹₇, Math. Comp. 29 (1975), 183–205. MR 371800, https://doi.org/10.1090/S0025-5718-1975-0371800-5
- [27] F. W. J. Olver, Asymptotics and special functions, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Computer Science and Applied Mathematics. MR 0435697
- [28] George Pólya, Collected papers, The MIT Press, Cambridge, Mass.-London, 1974. Vol. 1: Singularities of analytic functions; Edited by R. P. Boas; Mathematicians of Our Time, Vol. 7. MR 0505093
- [29] G. Purdy, R, and A. Terras & H. Williams, "Graphing L-functions of Kronecker svmbols in the real part of the critical strip," preprint, 1976, pp. 1-42.
- [30] S. Ramanujan, "On certain arithmetical functions," Trans. Cambridge Philos. Soc., v. 22, 1916, pp. 159-184.
- [31] R. A. Rankin, Contributions to the theory of Ramanujan’s function 𝜏(𝑛) and similar arithmetical functions. III. A note on the sum function of the Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc. 36 (1940), 150–151. MR 1249, https://doi.org/10.1017/s0305004100017114
- [32] Robert A. Rankin, Modular forms and functions, Cambridge University Press, Cambridge-New York-Melbourne, 1977. MR 0498390
- [33] R. A. Rankin and J. M. Rushforth, The coefficients of certain integral modular forms, Proc. Cambridge Philos. Soc. 50 (1954), 305–308. MR 59947, https://doi.org/10.1017/s0305004100029376
- [34] J. B. Rosser, J. M. Yoke & L. Schoenfeld, "Rigorous computation and the zeros of the Riemann zeta-function," Inform. Process., v. 68, 1969, pp. 70-76.
- [35] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc. (N.S.) 20 (1956), 47–87. MR 88511
- [36] Atle Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 1–15. MR 0182610
- [37] J.-P. Serre, A course in arithmetic, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French; Graduate Texts in Mathematics, No. 7. MR 0344216
- [38] Jean-Pierre Serre, Zeta and 𝐿 functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) Harper & Row, New York, 1965, pp. 82–92. MR 0194396
- [39] Daniel Shanks, Class number, a theory of factorization, and genera, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence, R.I., 1971, pp. 415–440. MR 0316385
- [40] Robert Spira, Calculation of the Ramanujan 𝜏-Dirichlet series, Math. Comp. 27 (1973), 379–385. MR 326995, https://doi.org/10.1090/S0025-5718-1973-0326995-4
- [41] Jacob Sturm, Projections of 𝐶^{∞} automorphic forms, Bull. Amer. Math. Soc. (N.S.) 2 (1980), no. 3, 435–439. MR 561527, https://doi.org/10.1090/S0273-0979-1980-14757-6
- [42] John T. Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry (Proc. Conf. Purdue Univ., 1963) Harper & Row, New York, 1965, pp. 93–110. MR 0225778
- [43] A. Terras, Fourier Analysis on Symmetric Spaces and Applications to Number Theory, preprint. 1980, pp. 1-283.
- [44] Riho Terras, The determination of incomplete gamma functions through analytic integration, J. Comput. Phys. 31 (1979), no. 1, 146–151. MR 531128, https://doi.org/10.1016/0021-9991(79)90066-4
- [45] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford, at the Clarendon Press, 1951. MR 0046485
- [46] Hideo Wada, Tables of Hecke operations. I, Seminar on Modern Methods in Number Theory (Inst. Statist. Math., Tokyo, 1971) Inst. Statist. Math., Tokyo, 1971, pp. 10. MR 0379377
- [47] S. Wagstaff, Jr., Shanks' SQUFOF Factorization Algorithm Program, preprint, 1980, one page, 60 lines.
- [48] S. Wagstaff, Jr. & M. C. Wunderlich, A Comparison of Two Factorization Methods, preprint, 1980, pp. 1-22.
- [49] G. N. Watson, A table of Ramanujan’s function 𝜏(𝑛), Proc. London Math. Soc. (2) 51 (1949), 1–13. MR 28887, https://doi.org/10.1112/plms/s2-51.1.1
- [50] André Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497–508. MR 29393, https://doi.org/10.1090/S0002-9904-1949-09219-4
- [51] Aurel Wintner, Random factorizations and Riemann’s hypothesis, Duke Math. J. 11 (1944), 267–275. MR 10160
- [52] D. Zagier, Correction to: “The Eichler-Selberg trace formula on 𝑆𝐿₂(𝑍)” (Introduction to modular forms, Appendix, pp. 44–54, Springer, Berlin, 1976) by S. Lang, Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Springer, Berlin, 1977, pp. 171–173. Lecture Notes in Math., Vol. 627. MR 0480354
Retrieve articles in Mathematics of Computation with MSC: 11F66, 11R42
Retrieve articles in all journals with MSC: 11F66, 11R42
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1984-0726002-2
Keywords:
Riemann hypothesis,
L-function,
zeta function,
incomplete gamma function,
Selberg trace formula,
cusp form,
modular form,
class number,
eigenform
Article copyright:
© Copyright 1984
American Mathematical Society