Explicit estimates for the error term in the prime number theorem for arithmetic progressions
HTML articles powered by AMS MathViewer
- by Kevin S. McCurley PDF
- Math. Comp. 42 (1984), 265-285 Request permission
Abstract:
We give explicit numerical estimates for the Chebyshev functions $\psi (x;k,l)$ and $\theta (x;k,l)$ for certain nonexceptional moduli k. For values of $\varepsilon$ and b, a constant c is tabulated such that $|\psi (x;k,l) - x/\varphi (k)| < \varepsilon x/\varphi (k)$, provided $(k,l) = 1$, $x \geqslant \exp (c{\log ^2}k)$, and $k \geqslant {10^b}$. The methods are similar to those used by Rosser and Schoenfeld in the case $k = 1$, but are based on explicit estimates of $N(T,\chi )$ and an explicit zero-free region for Dirichlet L-functions.References
-
M. Abramowitz & I. Stegun, editors, Handbook of Mathematical Functions, Dover, New York, 1965.
R. Backlund, "Über die Nullstellen der Riemannschen Zetafunction," Acta Math., v. 41, 1918, pp. 374-375.
- Harold Davenport, Multiplicative number theory, Lectures in Advanced Mathematics, No. 1, Markham Publishing Co., Chicago, Ill., 1967. Lectures given at the University of Michigan, Winter Term, 1966. MR 0217022
- A. E. Ingham, The distribution of prime numbers, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. Reprint of the 1932 original; With a foreword by R. C. Vaughan. MR 1074573
- Kevin S. McCurley, Explicit zero-free regions for Dirichlet $L$-functions, J. Number Theory 19 (1984), no. 1, 7–32. MR 751161, DOI 10.1016/0022-314X(84)90089-1
- F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0435697
- Karl Prachar, Primzahlverteilung, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). MR 0087685
- Hans Rademacher, On the Phragmén-Lindelöf theorem and some applications, Math. Z 72 (1959/1960), 192–204. MR 0117200, DOI 10.1007/BF01162949
- Barkley Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211–232. MR 3018, DOI 10.2307/2371291
- J. Barkley Rosser and Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$, Math. Comp. 29 (1975), 243–269. MR 457373, DOI 10.1090/S0025-5718-1975-0457373-7
- J. Barkley Rosser and Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$, Math. Comp. 29 (1975), 243–269. MR 457373, DOI 10.1090/S0025-5718-1975-0457373-7
- Riho Terras, A Miller algorithm for an incomplete Bessel function, J. Comput. Phys. 39 (1981), no. 1, 233–240. MR 608723, DOI 10.1016/0021-9991(81)90147-9
Additional Information
- © Copyright 1984 American Mathematical Society
- Journal: Math. Comp. 42 (1984), 265-285
- MSC: Primary 11N13; Secondary 11-04, 11Y35
- DOI: https://doi.org/10.1090/S0025-5718-1984-0726004-6
- MathSciNet review: 726004