Galerkin methods for singular boundary value problems in one space dimension
HTML articles powered by AMS MathViewer
- by Kenneth Eriksson and Vidar Thomée PDF
- Math. Comp. 42 (1984), 345-367 Request permission
Abstract:
Two Galerkin type piecewise polynomial approximation procedures based on bilinear forms with different weight functions are analyzed and compared. Optimal order error estimates are proved and numerical results are presented.References
- D. C. Brabston and H. B. Keller, A numerical method for singular two point boundary value problems, SIAM J. Numer. Anal. 14 (1977), no. 5, 779–791. MR 483475, DOI 10.1137/0714054
- Frank R. de Hoog and Richard Weiss, On the boundary value problem for systems of ordinary differential equations with a singularity of the second kind, SIAM J. Math. Anal. 11 (1980), no. 1, 41–60. MR 556495, DOI 10.1137/0511003 S. G. Eisenstat, R. S. Schreiber & M. H. Schultz, Finite Element Methods for Spherically Symmetric Elliptic Equations, Yale Computer Science Report No. 109, 1977.
- Bertil Gustafsson, A numerical method for solving singular boundary value problems, Numer. Math. 21 (1973/74), 328–344. MR 337015, DOI 10.1007/BF01436387
- Pierre Jamet, On the convergence of finite-difference approximations to one-dimensional singular boundary-value problems, Numer. Math. 14 (1969/70), 355–378. MR 261799, DOI 10.1007/BF02165591
- Dennis Jespersen, Ritz-Galerkin methods for singular boundary value problems, SIAM J. Numer. Anal. 15 (1978), no. 4, 813–834. MR 488786, DOI 10.1137/0715054
- R. D. Russell and L. F. Shampine, Numerical methods for singular boundary value problems, SIAM J. Numer. Anal. 12 (1975), 13–36. MR 400723, DOI 10.1137/0712002
- Robert Schreiber and Stanley C. Eisenstat, Finite element methods for spherically symmetric elliptic equations, SIAM J. Numer. Anal. 18 (1981), no. 3, 546–558. MR 615530, DOI 10.1137/0718034
- Mary Fanett Wheeler, $L_{\infty }$ estimates of optimal orders for Galerkin methods for one-dimensional second order parabolic and hyperbolic equations, SIAM J. Numer. Anal. 10 (1973), 908–913. MR 343658, DOI 10.1137/0710076
Additional Information
- © Copyright 1984 American Mathematical Society
- Journal: Math. Comp. 42 (1984), 345-367
- MSC: Primary 65L60; Secondary 65L10
- DOI: https://doi.org/10.1090/S0025-5718-1984-0736441-1
- MathSciNet review: 736441