A difference method for a singular boundary value problem of second order
Author:
Ewa Weinmüller
Journal:
Math. Comp. 42 (1984), 441-464
MSC:
Primary 65L10; Secondary 39A12
DOI:
https://doi.org/10.1090/S0025-5718-1984-0736446-0
MathSciNet review:
736446
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The standard three-point discretization applied to the numerical solution of linear boundary value problems for second order systems with a singularity at the origin is investigated. A number of numerical examples illustrating the theoretical results are presented.
- D. C. Brabston and H. B. Keller, A numerical method for singular two point boundary value problems, SIAM J. Numer. Anal. 14 (1977), no. 5, 779–791. MR 483475, DOI https://doi.org/10.1137/0714054
- Frank R. de Hoog and Richard Weiss, Difference methods for boundary value problems with a singularity of the first kind, SIAM J. Numer. Anal. 13 (1976), no. 5, 775–813. MR 440931, DOI https://doi.org/10.1137/0713063
- Frank R. de Hoog and Richard Weiss, On the boundary value problem for systems of ordinary differential equations with a singularity of the second kind, SIAM J. Math. Anal. 11 (1980), no. 1, 41–60. MR 556495, DOI https://doi.org/10.1137/0511003 N. Dunford & J. T. Schwartz, Linear Operators, Part I, Interscience, New York, 1967.
- Pierre Jamet, On the convergence of finite-difference approximations to one-dimensional singular boundary-value problems, Numer. Math. 14 (1969/70), 355–378. MR 261799, DOI https://doi.org/10.1007/BF02165591
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Herbert B. Keller and Antoinette W. Wolfe, On the nonunique equilibrium states and buckling mechanism of spherical shells, J. Soc. Indust. Appl. Math. 13 (1965), 674–705. MR 183174
- H. B. Keller, Approximation methods for nonlinear problems with application to two-point boundary value problems, Math. Comp. 29 (1975), 464–474. MR 371058, DOI https://doi.org/10.1090/S0025-5718-1975-0371058-7
- Yudell L. Luke, Mathematical functions and their approximations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0501762
- Frank Natterer, A generalized spline method for singular boundary value problems of ordinary differential equations, Linear Algebra Appl. 7 (1973), 189–216. MR 334530, DOI https://doi.org/10.1016/0024-3795%2873%2990040-2
- Frank Natterer, Das Differenzenverfahren für singuläre Rand-Eigenwertaufgaben gewöhnlicher Differentialgleichungen, Numer. Math. 23 (1975), 387–409 (German, with English summary). MR 416042, DOI https://doi.org/10.1007/BF01437038 S. V. Parter, M. L. Stein & P. R. Stein, On the Multiplicity of Solutions of a Differential Equation Arising in Chemical Reactor Theory, Tech. Rep. 194, Dept. of Computer Sciences, Univ. of Wisconsin-Madison, 1973.
- Seymour V. Parter, A posteriori error estimates, Numerical solutions of boundary value problems for ordinary differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1974), Academic Press, New York, 1975, pp. 277–292. MR 0405870 P. Rentrop, Eine Taylorreihenmethode zur numerischen Lösung von Zwei-Punkt Randwertproblemen mit Anwendung auf singuläre Probleme der nichtlinearen Schalentheorie, TUM, Institut für Mathematik, München, 1977.
- R. D. Russell and L. F. Shampine, Numerical methods for singular boundary value problems, SIAM J. Numer. Anal. 12 (1975), 13–36. MR 400723, DOI https://doi.org/10.1137/0712002 E. Weinmüller, "On the boundary value problem for systems of ordinary differential equations with a singularity of the first kind," SIAM J. Math. Anal., v. 15, 1984. (To appear.)
Retrieve articles in Mathematics of Computation with MSC: 65L10, 39A12
Retrieve articles in all journals with MSC: 65L10, 39A12
Additional Information
Article copyright:
© Copyright 1984
American Mathematical Society