A difference method for a singular boundary value problem of second order
HTML articles powered by AMS MathViewer
- by Ewa Weinmüller PDF
- Math. Comp. 42 (1984), 441-464 Request permission
Abstract:
The standard three-point discretization applied to the numerical solution of linear boundary value problems for second order systems with a singularity at the origin is investigated. A number of numerical examples illustrating the theoretical results are presented.References
- D. C. Brabston and H. B. Keller, A numerical method for singular two point boundary value problems, SIAM J. Numer. Anal. 14 (1977), no. 5, 779–791. MR 483475, DOI 10.1137/0714054
- Frank R. de Hoog and Richard Weiss, Difference methods for boundary value problems with a singularity of the first kind, SIAM J. Numer. Anal. 13 (1976), no. 5, 775–813. MR 440931, DOI 10.1137/0713063
- Frank R. de Hoog and Richard Weiss, On the boundary value problem for systems of ordinary differential equations with a singularity of the second kind, SIAM J. Math. Anal. 11 (1980), no. 1, 41–60. MR 556495, DOI 10.1137/0511003 N. Dunford & J. T. Schwartz, Linear Operators, Part I, Interscience, New York, 1967.
- Pierre Jamet, On the convergence of finite-difference approximations to one-dimensional singular boundary-value problems, Numer. Math. 14 (1969/70), 355–378. MR 261799, DOI 10.1007/BF02165591
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Herbert B. Keller and Antoinette W. Wolfe, On the nonunique equilibrium states and buckling mechanism of spherical shells, J. Soc. Indust. Appl. Math. 13 (1965), 674–705. MR 183174, DOI 10.1137/0113045
- H. B. Keller, Approximation methods for nonlinear problems with application to two-point boundary value problems, Math. Comp. 29 (1975), 464–474. MR 371058, DOI 10.1090/S0025-5718-1975-0371058-7
- Yudell L. Luke, Mathematical functions and their approximations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0501762
- Frank Natterer, A generalized spline method for singular boundary value problems of ordinary differential equations, Linear Algebra Appl. 7 (1973), 189–216. MR 334530, DOI 10.1016/0024-3795(73)90040-2
- Frank Natterer, Das Differenzenverfahren für singuläre Rand-Eigenwertaufgaben gewöhnlicher Differentialgleichungen, Numer. Math. 23 (1975), 387–409 (German, with English summary). MR 416042, DOI 10.1007/BF01437038 S. V. Parter, M. L. Stein & P. R. Stein, On the Multiplicity of Solutions of a Differential Equation Arising in Chemical Reactor Theory, Tech. Rep. 194, Dept. of Computer Sciences, Univ. of Wisconsin-Madison, 1973.
- Seymour V. Parter, A posteriori error estimates, Numerical solutions of boundary value problems for ordinary differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1974) Academic Press, New York, 1975, pp. 277–292. MR 0405870 P. Rentrop, Eine Taylorreihenmethode zur numerischen Lösung von Zwei-Punkt Randwertproblemen mit Anwendung auf singuläre Probleme der nichtlinearen Schalentheorie, TUM, Institut für Mathematik, München, 1977.
- R. D. Russell and L. F. Shampine, Numerical methods for singular boundary value problems, SIAM J. Numer. Anal. 12 (1975), 13–36. MR 400723, DOI 10.1137/0712002 E. Weinmüller, "On the boundary value problem for systems of ordinary differential equations with a singularity of the first kind," SIAM J. Math. Anal., v. 15, 1984. (To appear.)
Additional Information
- © Copyright 1984 American Mathematical Society
- Journal: Math. Comp. 42 (1984), 441-464
- MSC: Primary 65L10; Secondary 39A12
- DOI: https://doi.org/10.1090/S0025-5718-1984-0736446-0
- MathSciNet review: 736446