A priori estimates and analysis of a numerical method for a turning point problem

Authors:
Alan E. Berger, Hou De Han and R. Bruce Kellogg

Journal:
Math. Comp. **42** (1984), 465-492

MSC:
Primary 65L10; Secondary 34E20

DOI:
https://doi.org/10.1090/S0025-5718-1984-0736447-2

MathSciNet review:
736447

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Bounds are obtained for the derivatives of the solution of a turning point problem. These results suggest a modification of the El-Mistikawy Werle finite difference scheme at the turning point. A uniform error estimate is obtained for the resulting method, and illustrative numerical results are given.

**[1]**Leif R. Abrahamsson,*A priori estimates for solutions of singular perturbations with a turning point*, Studies in Appl. Math.**56**(1976/77), no. 1, 51–69. MR**463598**, https://doi.org/10.1002/sapm197756151**[2]**L. R. Abrahamsson,*Difference Approximations for Singular Perturbations With a Turning Point*, Dept. of Comput. Sci., Uppsala Univ., Rep. 58, 1975.**[3]**Milton Abramowitz and Irene A. Stegun,*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR**0167642****[4]**Alan E. Berger, Jay M. Solomon, and Melvyn Ciment,*An analysis of a uniformly accurate difference method for a singular perturbation problem*, Math. Comp.**37**(1981), no. 155, 79–94. MR**616361**, https://doi.org/10.1090/S0025-5718-1981-0616361-0**[5]**Earl A. Coddington and Norman Levinson,*Theory of ordinary differential equations*, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955. MR**0069338****[6]**T. M. El - Mistikawy & M. J. Werle, "Numerical method for boundary layers with blowing--The exponential box scheme,"*AIAA J.*, v. 16, 1978, pp. 749-751.**[7]**K. V. Emel′janov,*A difference scheme for the equation 𝜖𝑢”+𝑥𝑎(𝑥)𝑢’-𝑏(𝑥)𝑢=𝑓(𝑥)*, Trudy Inst. Mat. i Meh. Ural. Naučn. Centr Akad. Nauk SSSR**Vyp. 21 Raznost. Metody Rešenija Kraev. Zadač s Malym Parametrom i Razryv. Kraev. Uslovijami**(1976), 5–18, 60. (errata insert) (Russian). MR**0478640****[8]**Paul A. Farrell,*A uniformly convergent difference scheme for turning point problems*, Boundary and interior layers—computational and asymptotic methods (Proc. Conf., Trinity College, Dublin, 1980) Boole, Dún Laoghaire, 1980, pp. 270–274. MR**589374****[9]**P. A. Farrell,*Uniformly Convergent Difference Schemes for Singularly Perturbed Turning and Non-Turning Point Problems*, Doctoral Thesis, Trinity College, Dublin, Ireland, 1982.**[10]**A. F. Hegarty, J. J. H. Miller, and E. O’Riordan,*Uniform second order difference schemes for singular perturbation problems*, Boundary and interior layers—computational and asymptotic methods (Proc. Conf., Trinity College, Dublin, 1980) Boole, Dún Laoghaire, 1980, pp. 301–305. MR**589380****[11]**R. Bruce Kellogg,*Difference approximation for a singular perturbation problem with turning points*, Analytical and numerical approaches to asymptotic problems in analysis (Proc. Conf., Univ. Nijmegen, Nijmegen, 1980) North-Holland Math. Stud., vol. 47, North-Holland, Amsterdam-New York, 1981, pp. 133–139. MR**605504****[12]**R. Bruce Kellogg and Alice Tsan,*Analysis of some difference approximations for a singular perturbation problem without turning points*, Math. Comp.**32**(1978), no. 144, 1025–1039. MR**483484**, https://doi.org/10.1090/S0025-5718-1978-0483484-9**[13]**Barbro Kreiss and Heinz-Otto Kreiss,*Numerical methods for singular perturbation problems*, SIAM J. Numer. Anal.**18**(1981), no. 2, 262–276. MR**612142**, https://doi.org/10.1137/0718019**[14]**W. L. Miranker and J. P. Morreeuw,*Semianalytic numerical studies of turning points arising in stiff boundary value problems*, Math. Comput.**28**(1974), 1017–1034. MR**0381329**, https://doi.org/10.1090/S0025-5718-1974-0381329-5**[15]**Carl E. Pearson,*On a differential equation of boundary layer type*, J. Math. and Phys.**47**(1968), 134–154. MR**228189****[16]**Murray H. Protter and Hans F. Weinberger,*Maximum principles in differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR**0219861****[17]**Steven A. Pruess,*Solving linear boundary value problems by approximating the coefficients*, Math. Comp.**27**(1973), 551–561. MR**371100**, https://doi.org/10.1090/S0025-5718-1973-0371100-1**[18]**Milton E. Rose,*Weak-element approximations to elliptic differential equations*, Numer. Math.**24**(1975), no. 3, 185–204. MR**411206**, https://doi.org/10.1007/BF01436591**[19]**Ivar Stakgold,*Green’s functions and boundary value problems*, John Wiley & Sons, New York-Chichester-Brisbane, 1979. A Wiley-Interscience Publication; Pure and Applied Mathematics. MR**537127****[20]**E. T. Whittaker & G. N. Watson,*A Course of Modern Analysis*, MacMillan, New York, 1947.**[21]**Paul A. Farrell,*Sufficient conditions for the uniform convergence of difference schemes for singularly perturbed turning and nonturning point problems*, Computational and asymptotic methods for boundary and interior layers (Dublin, 1982) Boole Press Conf. Ser., vol. 4, Boole, Dún Laoghaire, 1982, pp. 230–235. MR**737580****[22]**R. E. O’Malley Jr.,*On boundary value problems for a singularly perturbed differential equation with a turning point*, SIAM J. Math. Anal.**1**(1970), 479–490. MR**273148**, https://doi.org/10.1137/0501041

Retrieve articles in *Mathematics of Computation*
with MSC:
65L10,
34E20

Retrieve articles in all journals with MSC: 65L10, 34E20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1984-0736447-2

Article copyright:
© Copyright 1984
American Mathematical Society