Calculation of the moments and the moment generating function for the reciprocal gamma distribution
Authors:
Arne Fransén and Staffan Wrigge
Journal:
Math. Comp. 42 (1984), 601-616
MSC:
Primary 65D20; Secondary 60E10, 62E15, 65U05
DOI:
https://doi.org/10.1090/S0025-5718-1984-0736456-3
MathSciNet review:
736456
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we consider the distribution . The aim of the investigation is twofold: first,to find numerical values of characteristics such as moments, variance, skewness, kurtosis,etc.; second, to study analytically and numerically the moment generating function
. Furthermore, we also make a generalization of the reciprocal gamma distribution, and study some of its properties.
- [1] J. J. Dorning, B. Nicolaenko, and J. K. Thurber, An integral identity due to Ramanujan which occurs in neutron transport theory, J. Math. Mech. 19 (1969/1970), 429–438. MR 0254298, https://doi.org/10.1512/iumj.1970.19.19040
- [2] A. Erdélyi, W. Magnus, F. Oberhettinger & F. G. Tricomi, Higher Transcendental Functions, Vol. Ill, McGraw-Hill, New York, 1955.
- [3] Arne Fransén, Addendum and corrigendum to: “High-precision values of the gamma function and of some related coefficients” [Math. Comp. 34 (1980), no. 150, 553–566; MR 81f:65004] by Fransén and S. Wrigge, Math. Comp. 37 (1981), no. 155, 233–235. MR 616377, https://doi.org/10.1090/S0025-5718-1981-0616377-4
- [4] Arne Fransén and Staffan Wrigge, High-precision values of the gamma function and of some related coefficients, Math. Comp. 34 (1980), no. 150, 553–566. MR 559204, https://doi.org/10.1090/S0025-5718-1980-0559204-5
- [5] Walter Gautschi, Polynomials orthogonal with respect to the reciprocal gamma function, BIT 22 (1982), no. 3, 387–389. MR 675673, https://doi.org/10.1007/BF01934452
- [6] Gene H. Golub and John H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23 (1969), 221-230; addendum, ibid. 23 (1969), no. 106, loose microfiche suppl, A1–A10. MR 0245201, https://doi.org/10.1090/S0025-5718-69-99647-1
- [7] Sven-Ȧke Gustafson, Rapid computation of general interpolation formulas and mechanical quadrature rules, Comm. ACM 14 (1971), 797–801. MR 0311069, https://doi.org/10.1145/362919.362941
- [8] G. H. Hardy, Ramanujan--Twelve Lectures on Subjects Suggested by His Life and Work, (reprinted), Chelsea, New York, 1959.
- [9] Collected papers of G. H. Hardy, Vols. I-VII (Especially Vol. IV, pp. 544-548), Oxford at the Clarendon Press, 1969.
- [10] W. A. Johnson, Private communication, 1982.
- [11] A. Lindhagen, Studier öfver Gamma-Funktionen och Några Beslägtade Transcendenter (Studies of the gamma function and of some related transcendental), Doctoral Thesis, B. Almqvist & J. Wiksell's boktryckeri, Upsala, 1887.
- [12] W. F. Lunnon, P. A. B. Pleasants, and N. M. Stephens, Arithmetic properties of Bell numbers to a composite modulus. I, Acta Arith. 35 (1979), no. 1, 1–16. MR 536875, https://doi.org/10.4064/aa-35-1-1-16
- [13] Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142
- [14] John Riordan, Combinatorial identities, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0231725
- [15] Ian N. Sneddon, Special functions of mathematical physics and chemistry, Oliver and Boyd, Edinburgh and London; Intersciences Publishers, Inc., New York, 1956. MR 0080170
- [16] Arne Fransén and Staffan Wrigge, Calculation of the moments and the moment generating function for the reciprocal gamma distribution, Math. Comp. 42 (1984), no. 166, 601–616. MR 736456, https://doi.org/10.1090/S0025-5718-1984-0736456-3
- [17] M. Wyman and R. Wong, The asymptotic behaviour of 𝜇(𝑧,𝛽,𝛼), Canadian J. Math. 21 (1969), 1013–1023. MR 244521, https://doi.org/10.4153/CJM-1969-112-4
Retrieve articles in Mathematics of Computation with MSC: 65D20, 60E10, 62E15, 65U05
Retrieve articles in all journals with MSC: 65D20, 60E10, 62E15, 65U05
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1984-0736456-3
Keywords:
Reciprocal gamma distribution,
population characteristics,
generating function
Article copyright:
© Copyright 1984
American Mathematical Society