## Calculation of the moments and the moment generating function for the reciprocal gamma distribution

HTML articles powered by AMS MathViewer

- by Arne Fransén and Staffan Wrigge PDF
- Math. Comp.
**42**(1984), 601-616 Request permission

## Abstract:

In this paper we consider the distribution $G(x) = {F^{ - 1}}\smallint _0^x{(\Gamma (t))^{ - 1}}\;dt$. The aim of the investigation is twofold: first,to find numerical values of characteristics such as moments, variance, skewness, kurtosis,etc.; second, to study analytically and numerically the moment generating function $\varphi (t) = \smallint _0^\infty {e^{ - tx}}/\Gamma (x)\;dx$. Furthermore, we also make a generalization of the reciprocal gamma distribution, and study some of its properties.## References

- J. J. Dorning, B. Nicolaenko, and J. K. Thurber,
*An integral identity due to Ramanujan which occurs in neutron transport theory*, J. Math. Mech.**19**(1969/1970), 429–438. MR**0254298**, DOI 10.1512/iumj.1970.19.19040
A. Erdélyi, W. Magnus, F. Oberhettinger & F. G. Tricomi, - Arne Fransén,
*Addendum and corrigendum to: “High-precision values of the gamma function and of some related coefficients” [Math. Comp. 34 (1980), no. 150, 553–566; MR 81f:65004] by Fransén and S. Wrigge*, Math. Comp.**37**(1981), no. 155, 233–235. MR**616377**, DOI 10.1090/S0025-5718-1981-0616377-4 - Arne Fransén and Staffan Wrigge,
*High-precision values of the gamma function and of some related coefficients*, Math. Comp.**34**(1980), no. 150, 553–566. MR**559204**, DOI 10.1090/S0025-5718-1980-0559204-5 - Walter Gautschi,
*Polynomials orthogonal with respect to the reciprocal gamma function*, BIT**22**(1982), no. 3, 387–389. MR**675673**, DOI 10.1007/BF01934452 - Gene H. Golub and John H. Welsch,
*Calculation of Gauss quadrature rules*, Math. Comp. 23 (1969), 221-230; addendum, ibid.**23**(1969), no. 106, loose microfiche suppl, A1–A10. MR**0245201**, DOI 10.1090/S0025-5718-69-99647-1 - Sven-Ȧke Gustafson,
*Rapid computation of general interpolation formulas and mechanical quadrature rules*, Comm. ACM**14**(1971), 797–801. MR**0311069**, DOI 10.1145/362919.362941
G. H. Hardy, - W. F. Lunnon, P. A. B. Pleasants, and N. M. Stephens,
*Arithmetic properties of Bell numbers to a composite modulus. I*, Acta Arith.**35**(1979), no. 1, 1–16. MR**536875**, DOI 10.4064/aa-35-1-1-16 - Raymond E. A. C. Paley and Norbert Wiener,
*Fourier transforms in the complex domain*, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR**1451142**, DOI 10.1090/coll/019 - John Riordan,
*Combinatorial identities*, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR**0231725** - Ian N. Sneddon,
*Special functions of mathematical physics and chemistry*, Oliver and Boyd, Edinburgh-London; Interscience Publishers, Inc., New York, 1956. MR**0080170**, DOI 10.1063/1.3059825 - Arne Fransén and Staffan Wrigge,
*Calculation of the moments and the moment generating function for the reciprocal gamma distribution*, Math. Comp.**42**(1984), no. 166, 601–616. MR**736456**, DOI 10.1090/S0025-5718-1984-0736456-3 - M. Wyman and R. Wong,
*The asymptotic behaviour of $\mu (z,\,\beta ,\,\alpha )$*, Canadian J. Math.**21**(1969), 1013–1023. MR**244521**, DOI 10.4153/CJM-1969-112-4

*Higher Transcendental Functions*, Vol. Ill, McGraw-Hill, New York, 1955.

*Ramanujan—Twelve Lectures on Subjects Suggested by His Life and Work*, (reprinted), Chelsea, New York, 1959. Collected papers of G. H. Hardy, Vols. I-VII (Especially Vol. IV, pp. 544-548), Oxford at the Clarendon Press, 1969. W. A. Johnson, Private communication, 1982. A. Lindhagen,

*Studier öfver Gamma-Funktionen och Några Beslägtade Transcendenter*(Studies of the gamma function and of some related transcendental), Doctoral Thesis, B. Almqvist & J. Wiksell’s boktryckeri, Upsala, 1887.

## Additional Information

- © Copyright 1984 American Mathematical Society
- Journal: Math. Comp.
**42**(1984), 601-616 - MSC: Primary 65D20; Secondary 60E10, 62E15, 65U05
- DOI: https://doi.org/10.1090/S0025-5718-1984-0736456-3
- MathSciNet review: 736456