Calculation of the moments and the moment generating function for the reciprocal gamma distribution
HTML articles powered by AMS MathViewer
- by Arne Fransén and Staffan Wrigge PDF
- Math. Comp. 42 (1984), 601-616 Request permission
Abstract:
In this paper we consider the distribution $G(x) = {F^{ - 1}}\smallint _0^x{(\Gamma (t))^{ - 1}}\;dt$. The aim of the investigation is twofold: first,to find numerical values of characteristics such as moments, variance, skewness, kurtosis,etc.; second, to study analytically and numerically the moment generating function $\varphi (t) = \smallint _0^\infty {e^{ - tx}}/\Gamma (x)\;dx$. Furthermore, we also make a generalization of the reciprocal gamma distribution, and study some of its properties.References
- J. J. Dorning, B. Nicolaenko, and J. K. Thurber, An integral identity due to Ramanujan which occurs in neutron transport theory, J. Math. Mech. 19 (1969/1970), 429–438. MR 0254298, DOI 10.1512/iumj.1970.19.19040 A. Erdélyi, W. Magnus, F. Oberhettinger & F. G. Tricomi, Higher Transcendental Functions, Vol. Ill, McGraw-Hill, New York, 1955.
- Arne Fransén, Addendum and corrigendum to: “High-precision values of the gamma function and of some related coefficients” [Math. Comp. 34 (1980), no. 150, 553–566; MR 81f:65004] by Fransén and S. Wrigge, Math. Comp. 37 (1981), no. 155, 233–235. MR 616377, DOI 10.1090/S0025-5718-1981-0616377-4
- Arne Fransén and Staffan Wrigge, High-precision values of the gamma function and of some related coefficients, Math. Comp. 34 (1980), no. 150, 553–566. MR 559204, DOI 10.1090/S0025-5718-1980-0559204-5
- Walter Gautschi, Polynomials orthogonal with respect to the reciprocal gamma function, BIT 22 (1982), no. 3, 387–389. MR 675673, DOI 10.1007/BF01934452
- Gene H. Golub and John H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23 (1969), 221-230; addendum, ibid. 23 (1969), no. 106, loose microfiche suppl, A1–A10. MR 0245201, DOI 10.1090/S0025-5718-69-99647-1
- Sven-Ȧke Gustafson, Rapid computation of general interpolation formulas and mechanical quadrature rules, Comm. ACM 14 (1971), 797–801. MR 0311069, DOI 10.1145/362919.362941 G. H. Hardy, Ramanujan—Twelve Lectures on Subjects Suggested by His Life and Work, (reprinted), Chelsea, New York, 1959. Collected papers of G. H. Hardy, Vols. I-VII (Especially Vol. IV, pp. 544-548), Oxford at the Clarendon Press, 1969. W. A. Johnson, Private communication, 1982. A. Lindhagen, Studier öfver Gamma-Funktionen och Några Beslägtade Transcendenter (Studies of the gamma function and of some related transcendental), Doctoral Thesis, B. Almqvist & J. Wiksell’s boktryckeri, Upsala, 1887.
- W. F. Lunnon, P. A. B. Pleasants, and N. M. Stephens, Arithmetic properties of Bell numbers to a composite modulus. I, Acta Arith. 35 (1979), no. 1, 1–16. MR 536875, DOI 10.4064/aa-35-1-1-16
- Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142, DOI 10.1090/coll/019
- John Riordan, Combinatorial identities, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0231725
- Ian N. Sneddon, Special functions of mathematical physics and chemistry, Oliver and Boyd, Edinburgh-London; Interscience Publishers, Inc., New York, 1956. MR 0080170, DOI 10.1063/1.3059825
- Arne Fransén and Staffan Wrigge, Calculation of the moments and the moment generating function for the reciprocal gamma distribution, Math. Comp. 42 (1984), no. 166, 601–616. MR 736456, DOI 10.1090/S0025-5718-1984-0736456-3
- M. Wyman and R. Wong, The asymptotic behaviour of $\mu (z,\,\beta ,\,\alpha )$, Canadian J. Math. 21 (1969), 1013–1023. MR 244521, DOI 10.4153/CJM-1969-112-4
Additional Information
- © Copyright 1984 American Mathematical Society
- Journal: Math. Comp. 42 (1984), 601-616
- MSC: Primary 65D20; Secondary 60E10, 62E15, 65U05
- DOI: https://doi.org/10.1090/S0025-5718-1984-0736456-3
- MathSciNet review: 736456