The mean values of totally real algebraic integers

Author:
C. J. Smyth

Journal:
Math. Comp. **42** (1984), 663-681

MSC:
Primary 11R80; Secondary 11R04, 11S05

DOI:
https://doi.org/10.1090/S0025-5718-1984-0736460-5

MathSciNet review:
736460

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the *p*th root of the mean absolute values of the *p*th powers of a totally real algebraic integer . For each fixed we study the set of such . We show that its structure is as follows: on the nonnegative real line it consists of some isolated points, followed by a small interval in which its structure is as yet undetermined. Beyond this small interval, it is everywhere dense.

**[1]**David W. Boyd,*Small Salem numbers*, Duke Math. J.**44**(1977), no. 2, 315–328. MR**453692****[2]**Veikko Ennola,*Conjugate algebraic integers in an interval*, Proc. Amer. Math. Soc.**53**(1975), no. 2, 259–261. MR**382219**, https://doi.org/10.1090/S0002-9939-1975-0382219-7**[3]**Henry W. Gould,*Combinatorial identities*, Henry W. Gould, Morgantown, W.Va., 1972. A standardized set of tables listing 500 binomial coefficient summations. MR**0354401****[4]**I. S. Gradshteyn & I. M. Ryzhik,*Table of Integrals, Series, and Products*, Academic Press, New York, 1965.**[5]**D. H. Greene & D. E. Knuth,*Mathematics for the Analysis of Algorithms*, Birkhäuser, Boston, 1981.**[6]**G. H. Hardy, J. E. Littlewood, and G. Pólya,*Inequalities*, Cambridge, at the University Press, 1952. 2d ed. MR**0046395****[7]**John Hunter,*A generalization of the inequality of the arithmetic-geometric means*, Proc. Glasgow Math. Assoc.**2**(1956), 149–158. MR**75984****[8]**Leonard Lewin,*Polylogarithms and associated functions*, North-Holland Publishing Co., New York-Amsterdam, 1981. With a foreword by A. J. Van der Poorten. MR**618278****[9]**M. J. McAuley,*Topics in J-Fields and a Diameter Problem*, M. Sc. thesis, University of Adelaide, 1981.**[10]**D. S. Mitrinović,*Analytic inequalities*, Springer-Verlag, New York-Berlin, 1970. In cooperation with P. M. Vasić. Die Grundlehren der mathematischen Wissenschaften, Band 165. MR**0274686****[11]**Raphael M. Robinson,*Intervals containing infinitely many sets of conjugate algebraic integers*, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 305–315. MR**0144892****[12]**Raphael M. Robinson,*Algebraic equations with span less than 4*, Math. Comp.**18**(1964), 547–559. MR**169374**, https://doi.org/10.1090/S0025-5718-1964-0169374-X**[13]**Carl Ludwig Siegel,*The trace of totally positive and real algebraic integers*, Ann. of Math. (2)**46**(1945), 302–312. MR**12092**, https://doi.org/10.2307/1969025**[14]**C. J. Smyth,*On the measure of totally real algebraic integers*, J. Austral. Math. Soc. Ser. A**30**(1980/81), no. 2, 137–149. MR**607924****[15]**C. J. Smyth,*On the measure of totally real algebraic integers*, J. Austral. Math. Soc. Ser. A**30**(1980/81), no. 2, 137–149. MR**607924**

Retrieve articles in *Mathematics of Computation*
with MSC:
11R80,
11R04,
11S05

Retrieve articles in all journals with MSC: 11R80, 11R04, 11S05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1984-0736460-5

Article copyright:
© Copyright 1984
American Mathematical Society