Semidiscrete and single step fully discrete approximations for second order hyperbolic equations with time-dependent coefficients
HTML articles powered by AMS MathViewer
- by Laurence A. Bales PDF
- Math. Comp. 43 (1984), 383-414 Request permission
Abstract:
${L^2}$ norm error estimates are proved for finite element approximations to the solutions of initial boundary value problems for second order hyperbolic partial differential equations with time-dependent coefficients. Optimal order rates of convergence are shown for semidiscrete and single step fully discrete schemes using specially constructed initial data. The initial data are designed so that the data used for the fully discrete equation is reasonable to compute and so that the optimal order estimates can be proved.References
- Garth A. Baker, Error estimates for finite element methods for second order hyperbolic equations, SIAM J. Numer. Anal. 13 (1976), no. 4, 564–576. MR 423836, DOI 10.1137/0713048
- Garth A. Baker and James H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Anal. Numér. 13 (1979), no. 2, 75–100 (English, with French summary). MR 533876, DOI 10.1051/m2an/1979130200751
- Garth A. Baker, James H. Bramble, and Vidar Thomée, Single step Galerkin approximations for parabolic problems, Math. Comp. 31 (1977), no. 140, 818–847. MR 448947, DOI 10.1090/S0025-5718-1977-0448947-X
- Garth A. Baker, Vassilios A. Dougalis, and Steven M. Serbin, High order accurate two-step approximations for hyperbolic equations, RAIRO Anal. Numér. 13 (1979), no. 3, 201–226 (English, with French summary). MR 543933, DOI 10.1051/m2an/1979130302011
- James H. Bramble and Peter H. Sammon, Efficient higher order single step methods for parabolic problems. I, Math. Comp. 35 (1980), no. 151, 655–677. MR 572848, DOI 10.1090/S0025-5718-1980-0572848-X
- J. H. Bramble, A. H. Schatz, V. Thomée, and L. B. Wahlbin, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations, SIAM J. Numer. Anal. 14 (1977), no. 2, 218–241. MR 448926, DOI 10.1137/0714015 M. Crouzeix, Sur l’Approximation des Équations Différentielles Opérationnelles Linéaires par des Méthodes de Runge-Kutta, Thèse, Université de Paris VI, 1975.
- Vassilios A. Dougalis, Multistep-Galerkin methods for hyperbolic equations, Math. Comp. 33 (1979), no. 146, 563–584. MR 521277, DOI 10.1090/S0025-5718-1979-0521277-5
- Vassilios A. Dougalis and Steven M. Serbin, Two-step high-order accurate full discretizations of second-order hyperbolic equations, Advances in computer methods for partial differential equations, III (Proc. Third IMACS Internat. Sympos., Lehigh Univ., Bethlehem, Pa., 1979), IMACS, New Brunswick, N.J., 1979, pp. 214–220. MR 603474
- Jim Douglas Jr., Todd Dupont, and Richard E. Ewing, Incomplete iteration for time-stepping a Galerkin method for a quasilinear parabolic problem, SIAM J. Numer. Anal. 16 (1979), no. 3, 503–522. MR 530483, DOI 10.1137/0716039
- Todd Dupont, $L^{2}$-estimates for Galerkin methods for second order hyperbolic equations, SIAM J. Numer. Anal. 10 (1973), 880–889. MR 349045, DOI 10.1137/0710073
- E. Gekeler, Linear multistep methods and Galerkin procedures for initial boundary value problems, SIAM J. Numer. Anal. 13 (1976), no. 4, 536–548. MR 431749, DOI 10.1137/0713046
- E. Gekeler, Galerkin-Runge-Kutta methods and hyperbolic initial boundary value problems, Computing 18 (1977), no. 1, 79–88 (English, with German summary). MR 438739, DOI 10.1007/BF02248779
- Gianni Gilardi, Teoremi di regolarità per la soluzione di un’equazione differenziale astratta lineare del secondo ordine, Ist. Lombardo Accad. Sci. Lett. Rend. A 106 (1972), 641–675 (Italian). MR 333386
- Louis A. Hageman and David M. Young, Applied iterative methods, Computer Science and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 630192
- J. D. Lambert, Computational methods in ordinary differential equations, John Wiley & Sons, London-New York-Sydney, 1973. Introductory Mathematics for Scientists and Engineers. MR 0423815 J. L. Lions, E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, Berlin and New York, 1972. J. L. Lions & E. Magenes, Nonhomogeneous Boundary Value Problems and Applications, Vol. II, Springer-Verlag, Berlin and New York, 1972.
- Ming You Huang and Vidar Thomée, Some convergence estimates for semidiscrete type schemes for time-dependent nonselfadjoint parabolic equations, Math. Comp. 37 (1981), no. 156, 327–346. MR 628699, DOI 10.1090/S0025-5718-1981-0628699-1 P. H. Sammon, Approximations for Parabolic Equations with Time-Dependent Coefficients, Ph.D. Thesis, Cornell University, 1978.
- Peter H. Sammon, Convergence estimates for semidiscrete parabolic equation approximations, SIAM J. Numer. Anal. 19 (1982), no. 1, 68–92. MR 646595, DOI 10.1137/0719002
- Miloš Zlámal, Finite element multistep discretizations of parabolic boundary value problems, Math. Comp. 29 (1975), 350–359. MR 371105, DOI 10.1090/S0025-5718-1975-0371105-2
Additional Information
- © Copyright 1984 American Mathematical Society
- Journal: Math. Comp. 43 (1984), 383-414
- MSC: Primary 65M60; Secondary 65M20
- DOI: https://doi.org/10.1090/S0025-5718-1984-0758190-6
- MathSciNet review: 758190