A new scalar potential formulation of the magnetostatic field problem
HTML articles powered by AMS MathViewer
 by Joseph E. Pasciak PDF
 Math. Comp. 43 (1984), 433445 Request permission
Abstract:
A new method for approximating magnetostatic field problems is given in this paper. The new method approximates the scalar potential for the magnetic intensity and is based on a volume integral formulation. The derivation of the new computational method uses the spectral properties of the relevant integral operator. The corresponding algorithm is similar to that obtained from coupled differential and boundary integral approaches. Convergence and stability theorems are proven. Finally, convergence results in actual computations are compared with results for the usual volume integral method used in GFUN3D.References

A. G. Armstrong, A. M. Collie, C. J. Diserens, N. J. Newman, M. J. Simkin & C. W. Trowbridge, New Developments in the Magnet Design Program GFUN, Rutherford Laboratory Report No. RL79097.
J. H. Bramble & J. E. Pasciak, "A new computational approach for the linearized scalar potential formulation of the magnetostatic field problem," IEEE Trans. Mag, v. Mag18, 1982, pp. 357361.
 F. Brezzi, C. Johnson, and J.C. Nédélec, On the coupling of boundary integral and finite element methods, Proceedings of the Fourth Symposium on Basic Problems of Numerical Mathematics (Plzeň, 1978) Charles Univ., Prague, 1978, pp. 103–114. MR 566158
 M. V. K. Chari and P. P. Silvester (eds.), Finite elements in electrical and magnetic field problems, Wiley Series in Numerical Methods in Engineering, John Wiley & Sons, Ltd., Chichester, 1980. MR 589746
 Mark J. Friedman, Finite element formulation of the general magnetostatic problem in the space of solenoidal vector functions, Math. Comp. 43 (1984), no. 168, 415–431. MR 758191, DOI 10.1090/S00255718198407581918
 Mark J. Friedman, Mathematical study of the nonlinear singular integral magnetic field equation. I, SIAM J. Appl. Math. 39 (1980), no. 1, 14–20. MR 585825, DOI 10.1137/0139003
 Mark J. Friedman and Joseph E. Pasciak, Spectral properties for the magnetization integral operator, Math. Comp. 43 (1984), no. 168, 447–453. MR 758193, DOI 10.1090/S00255718198407581931
 R. Glowinski and A. Marrocco, Analyse numérique du champ magnétique d’un alternateur par éléments finis et surrelaxation ponctuelle non linéaire, Comput. Methods Appl. Mech. Engrg. 3 (1974), no. 1, 55–85. MR 413547, DOI 10.1016/00457825(74)900425 J. L. Lions & E. Magenes, NonHomogeneous Boundary Value Problems and Applications, SpringerVerlag, New York, 1972. J. Necas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967.
 Joseph E. Pasciak, An iterative algorithm for the volume integral method for magnetostatics problems, Comput. Math. Appl. 8 (1982), no. 4, 283–290. MR 679401, DOI 10.1016/08981221(82)900104 J. Simkin & C. W. Trowbridge, Three Dimensional Computer Program (TOSCA) for Nonlinear Electromagnetic Fields, Rutherford Laboratory Report No. RL79097. C. W. Trowbridge, Progress in Magnet Design by Computers, Proc. Fourth Internat. Conf. Magnet. Tech., U.S. Atomic Energy Commission Rep. Conf720908, 1972, pp. 555565. M. M. Vaǐnberg, Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, Wiley, New York, 1973.
 V. S. Vladimirov, Equations of mathematical physics, Pure and Applied Mathematics, vol. 3, Marcel Dekker, Inc., New York, 1971. Translated from the Russian by Audrey Littlewood; Edited by Alan Jeffrey. MR 0268497
Additional Information
 © Copyright 1984 American Mathematical Society
 Journal: Math. Comp. 43 (1984), 433445
 MSC: Primary 78A30; Secondary 65N30
 DOI: https://doi.org/10.1090/S0025571819840758192X
 MathSciNet review: 758192