Decay rates for inverses of band matrices
HTML articles powered by AMS MathViewer
- by Stephen Demko, William F. Moss and Philip W. Smith PDF
- Math. Comp. 43 (1984), 491-499 Request permission
Abstract:
Spectral theory and classical approximation theory are used to give a new proof of the exponential decay of the entries of the inverse of band matrices. The rate of decay of ${A^{ - 1}}$ can be bounded in terms of the (essential) spectrum of $A{A^\ast }$ for general A and in terms of the (essential) spectrum of A for positive definite A. In the positive definite case the bound can be attained. These results are used to establish the exponential decay for a class of generalized eigenvalue problems and to establish exponential decay for certain sparse but nonbanded matrices. We also establish decay rates for certain generalized inverses.References
- Frank F. Bonsall and John Duncan, Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR 0423029
- Adi Ben-Israel and Thomas N. E. Greville, Generalized inverses: theory and applications, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. MR 0396607
- Carl de Boor, Odd-degree spline interpolation at a biinfinite knot sequence, Approximation theory (Proc. Internat. Colloq., Inst. Angew. Math., Univ. Bonn, Bonn, 1976) Springer, Berlin, 1976, pp. 30–53. MR 0613677 C. de Boor, "A bound on the ${L_\infty }$-norm of the ${L_2}$-approximation by splines in terms of a global mesh ratio," Math. Comp., v. 30, 1976, pp. 687-694.
- Carl de Boor, Dichotomies for band matrices, SIAM J. Numer. Anal. 17 (1980), no. 6, 894–907. MR 595452, DOI 10.1137/0717074
- Stephen Demko, Inverses of band matrices and local convergence of spline projections, SIAM J. Numer. Anal. 14 (1977), no. 4, 616–619. MR 455281, DOI 10.1137/0714041
- Jean Descloux, On finite element matrices, SIAM J. Numer. Anal. 9 (1972), 260–265. MR 309292, DOI 10.1137/0709025
- P. A. Fillmore, J. G. Stampfli, and J. P. Williams, On the essential numerical range, the essential spectrum, and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179–192. MR 322534
- I. C. Gohberg and I. A. Fel′dman, Convolution equations and projection methods for their solution, Translations of Mathematical Monographs, Vol. 41, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by F. M. Goldware. MR 0355675
- K. Höllig, $L_{\infty }$-boundedness of $L_{2}$-projections on splines for a geometric mesh, J. Approx. Theory 33 (1981), no. 4, 318–333. MR 646153, DOI 10.1016/0021-9045(81)90063-0
- W. J. Kammerer and G. W. Reddien Jr., Local convergence of smooth cubic spline interpolates, SIAM J. Numer. Anal. 9 (1972), 687–694. MR 317509, DOI 10.1137/0709057
- D. Kershaw, Inequalities on the elements of the inverse of a certain tridiagonal matrix, Math. Comp. 24 (1970), 155–158. MR 258260, DOI 10.1090/S0025-5718-1970-0258260-5
- A. I. Markushevich, Theory of functions of a complex variable. Vol. III, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. Revised English edition, translated and edited by Richard A. Silverman. MR 0215964
- Günter Meinardus, Approximation of functions: Theory and numerical methods, Expanded translation of the German edition, Springer Tracts in Natural Philosophy, Vol. 13, Springer-Verlag New York, Inc., New York, 1967. Translated by Larry L. Schumaker. MR 0217482
- Boris Mityagin, Quadratic pencils and least-squares piecewise-polynomial approximation, Math. Comp. 40 (1983), no. 161, 283–300. MR 679446, DOI 10.1090/S0025-5718-1983-0679446-0
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
Additional Information
- © Copyright 1984 American Mathematical Society
- Journal: Math. Comp. 43 (1984), 491-499
- MSC: Primary 15A09; Secondary 15A60, 65F15
- DOI: https://doi.org/10.1090/S0025-5718-1984-0758197-9
- MathSciNet review: 758197