Composite Hermite-Birkhoff quadrature formulas of Gaussian type
HTML articles powered by AMS MathViewer
- by Nira Dyn PDF
- Math. Comp. 43 (1984), 535-541 Request permission
Abstract:
We show how to combine incidence matrices, which admit Hermite-Birkhoff quadrature formulas of Gaussian type for any positive measure, in such a way that the resulting matrix also admits Gaussian type quadratures for any positive measure. Moreover, the uniqueness property and the extremal property of the formulas corresponding to the submatrices are transferred to the formula admitted by the composed matrix.References
- Nira Dyn, On the existence of Hermite-Birkhoff quadrature formulas of Gaussian type, J. Approx. Theory 31 (1981), no. 1, 22–32. MR 619805, DOI 10.1016/0021-9045(81)90028-9 N. Dyn, "Hermite-Birkhoff quadrature formulas of Gaussian type," in Approximation Theory III (E. W. Cheney, ed.), Academic Press, New York, 1980, pp. 371-376.
- Kurt Jetter, A new class of Gaussian quadrature formulas based on Birkhoff type data, SIAM J. Numer. Anal. 19 (1982), no. 5, 1081–1089. MR 672579, DOI 10.1137/0719078
- G. G. Lorentz and S. D. Riemenschneider, Birkhoff quadrature matrices, Linear spaces and approximation (Proc. Conf., Math. Res. Inst., Oberwolfach, 1977) Internat. Ser. Numer. Math., Vol. 40, Birkhäuser, Basel, 1978, pp. 359–374. MR 0510779
- George G. Lorentz, Kurt Jetter, and Sherman D. Riemenschneider, Birkhoff interpolation, Encyclopedia of Mathematics and its Applications, vol. 19, Addison-Wesley Publishing Co., Reading, Mass., 1983. MR 680938
- C. A. Micchelli and T. J. Rivlin, Quadrature formulae and Hermite-Birkhoff interpolation, Advances in Math. 11 (1973), 93–112. MR 318743, DOI 10.1016/0001-8708(73)90004-2
- Tiberiu Popoviciu, Sur une généralisation de la formule d’intégration numérique de Gauss, Acad. R.P. Romîne Fil. Iaşi Stud. Cerc. Şti. Mat. 6 (1955), 29–57 (Romanian, with French and Russian summaries). MR 85604
- P. Turán, On the theory of the mechanical quadrature, Acta Sci. Math. (Szeged) 12 (1950), 30–37. MR 36797
Additional Information
- © Copyright 1984 American Mathematical Society
- Journal: Math. Comp. 43 (1984), 535-541
- MSC: Primary 41A55; Secondary 41A50
- DOI: https://doi.org/10.1090/S0025-5718-1984-0758200-6
- MathSciNet review: 758200