More trigonometric integrals
HTML articles powered by AMS MathViewer
- by Henry E. Fettis PDF
- Math. Comp. 43 (1984), 557-564 Request permission
Abstract:
Integrals of the form \[ \int _0^{\pi /2} {{e^{ip\theta }}{{\cos }^q}\theta d\theta ,\quad \int _0^{\pi /2} {{e^{ip\theta }}{{\sin }^q}\theta d\theta } } \] (p real, $\operatorname {Re} (q) > - 1$) are expressed in terms of Gamma and hypergeometric functions for integer and noninteger values of q and p. The results include those of [2] as special cases.References
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London-Toronto, Ont., 1980. Corrected and enlarged edition edited by Alan Jeffrey; Incorporating the fourth edition edited by Yu. V. Geronimus [Yu. V. Geronimus] and M. Yu. Tseytlin [M. Yu. Tseĭtlin]; Translated from the Russian. MR 582453
- Henry E. Fettis, On some trigonometric integrals, Math. Comp. 35 (1980), no. 152, 1325–1329. MR 583510, DOI 10.1090/S0025-5718-1980-0583510-1 M. Abramowitz & I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.
- Wilhelm Magnus and Fritz Oberhettinger, Formeln und Sätze für die speziellen Funktionen der mathematischen Physik, Springer-Verlag, Berlin, 1948 (German). 2d ed. MR 0025629
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
Additional Information
- © Copyright 1984 American Mathematical Society
- Journal: Math. Comp. 43 (1984), 557-564
- MSC: Primary 33A10; Secondary 26A42
- DOI: https://doi.org/10.1090/S0025-5718-1984-0758203-1
- MathSciNet review: 758203