## More trigonometric integrals

HTML articles powered by AMS MathViewer

- by Henry E. Fettis PDF
- Math. Comp.
**43**(1984), 557-564 Request permission

## Abstract:

Integrals of the form \[ \int _0^{\pi /2} {{e^{ip\theta }}{{\cos }^q}\theta d\theta ,\quad \int _0^{\pi /2} {{e^{ip\theta }}{{\sin }^q}\theta d\theta } } \] (*p*real, $\operatorname {Re} (q) > - 1$) are expressed in terms of Gamma and hypergeometric functions for integer and noninteger values of

*q*and

*p*. The results include those of [2] as special cases.

## References

- I. S. Gradshteyn and I. M. Ryzhik,
*Table of integrals, series, and products*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London-Toronto, Ont., 1980. Corrected and enlarged edition edited by Alan Jeffrey; Incorporating the fourth edition edited by Yu. V. Geronimus [Yu. V. Geronimus] and M. Yu. Tseytlin [M. Yu. Tseĭtlin]; Translated from the Russian. MR**582453** - Henry E. Fettis,
*On some trigonometric integrals*, Math. Comp.**35**(1980), no. 152, 1325–1329. MR**583510**, DOI 10.1090/S0025-5718-1980-0583510-1
M. Abramowitz & I. Stegun, - Wilhelm Magnus and Fritz Oberhettinger,
*Formeln und Sätze für die speziellen Funktionen der mathematischen Physik*, Springer-Verlag, Berlin, 1948 (German). 2d ed. MR**0025629** - G. N. Watson,
*A treatise on the theory of Bessel functions*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR**1349110**

*Handbook of Mathematical Functions*, Dover, New York, 1965.

## Additional Information

- © Copyright 1984 American Mathematical Society
- Journal: Math. Comp.
**43**(1984), 557-564 - MSC: Primary 33A10; Secondary 26A42
- DOI: https://doi.org/10.1090/S0025-5718-1984-0758203-1
- MathSciNet review: 758203