An algorithm for the second immanant
HTML articles powered by AMS MathViewer
- by Robert Grone and Russell Merris PDF
- Math. Comp. 43 (1984), 589-591 Request permission
Abstract:
Let $\chi$ be an irreducible character of the symmetric group ${S_n}$. For $A = ({a_{ij}})$ an n-by-n matrix, define the immanant of A corresponding to $\chi$ by \[ d(A) = \sum \limits _{\sigma \in {S_n}} {\chi (\sigma )\prod \limits _{t = 1}^n {{a_{t\sigma (t)}}.} } \] The article contains an algorithm for computing $d(A)$ when $\chi$ corresponds to the partition (2, ${1^{n - 2}}$).References
- Dragoš M. Cvetković, Michael Doob, and Horst Sachs, Spectra of graphs, Pure and Applied Mathematics, vol. 87, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. Theory and application. MR 572262 W. Hartmann, private communication.
- Russell Merris, On vanishing decomposable symmetrized tensors, Linear and Multilinear Algebra 5 (1977/78), no. 2, 79–86. MR 573028, DOI 10.1080/03081087708817180
- Russell Merris, Representations of $\textrm {GL}(n,\,\textbf {R})$ and generalized matrix functions of class MPW, Linear and Multilinear Algebra 11 (1982), no. 2, 133–141. MR 650727, DOI 10.1080/03081088208817438
- Russell Merris, Single-hook characters and Hamiltonian circuits, Linear and Multilinear Algebra 14 (1983), no. 1, 21–35. MR 712823, DOI 10.1080/03081088308817540
- Russell Merris, Kenneth R. Rebman, and William Watkins, Permanental polynomials of graphs, Linear Algebra Appl. 38 (1981), 273–288. MR 636042, DOI 10.1016/0024-3795(81)90026-4
- L. G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci. 8 (1979), no. 2, 189–201. MR 526203, DOI 10.1016/0304-3975(79)90044-6
Additional Information
- © Copyright 1984 American Mathematical Society
- Journal: Math. Comp. 43 (1984), 589-591
- MSC: Primary 15A15; Secondary 05C50, 20C30
- DOI: https://doi.org/10.1090/S0025-5718-1984-0758206-7
- MathSciNet review: 758206