## Products and sums of powers of binomial coefficients mod $p$ and solutions of certain quaternary Diophantine systems

HTML articles powered by AMS MathViewer

- by Richard H. Hudson PDF
- Math. Comp.
**43**(1984), 603-613 Request permission

## Abstract:

In this paper we prove that certain products and sums of powers of binomial coefficients modulo $p = qf + 1$, $q = {a^2} + {b^2}$, are determined by the parameters*x*occurring in distinct solutions of the quaternary quadratic partition \[ \begin {array}{*{20}{c}} {16{p^\alpha } = {x^2} + 2q{u^2} + 2q{v^2} + q{w^2},\quad (x,u,v,w,p) = 1,} \\ {xw = a{v^2} - 2buv - a{u^2},\quad x \equiv 4\pmod q,\alpha \geqslant 1.} \\ \end {array} \] The number of distinct solutions of this partition depends heavily on the class number of the imaginary cyclic quartic field \[ K = Q\left ( {i\sqrt {2q + 2a\sqrt q } } \right ),\] as well as on the number of roots of unity in

*K*and on the way that

*p*splits into prime ideals in the ring of integers of the field $Q({e^{2\pi ip/q}})$. Let the four cosets of the subgroup

*A*of quartic residues be given by ${c_j} = {2^j}A,j = 0,1,2,3$, and let \[ {s_j} = \frac {1}{q}\sum \limits _{t \in {c_j}} {t,\quad j = 0,1,2,3.} \] Let ${s_m}$ and ${s_n}$ denote the smallest and next smallest of the ${s_j}$ respectively. We give new, and unexpectedly simple determinations of ${\Pi _{k \in {c_n}}}kf!$ and ${\Pi _{k \in {c_{n + 2}}}}kf!$, in terms of the parameters

*x*in the above partition of $16{p^\alpha }$, in the complicated case that arises when the class number of

*K*is $> 1$ and ${s_m} \ne {s_n}$.

## References

- Duncan A. Buell and Richard H. Hudson,
*Solutions of certain quaternary quadratic systems*, Pacific J. Math.**114**(1984), no. 1, 23–45. MR**755481**, DOI 10.2140/pjm.1984.114.23 - L. E. Dickson,
*Cyclotomy and trinomial congruences*, Trans. Amer. Math. Soc.**37**(1935), no. 3, 363–380. MR**1501791**, DOI 10.1090/S0002-9947-1935-1501791-3
C. F. Gauss, "Theoria residuorum biquadraticorum, Comment. I," Comment, soc. reg. sci. Gottingensis rec., v. 6, 1828, p. 27. (Werke vol. 2, p.90.)
- Reinaldo E. Giudici, Joseph B. Muskat, and Stanley F. Robinson,
*On the evaluation of Brewer’s character sums*, Trans. Amer. Math. Soc.**171**(1972), 317–347. MR**306122**, DOI 10.1090/S0002-9947-1972-0306122-5 - Helmut Hasse,
*Der $2^{n}$-te Potenzcharakter von $2$ im Körper der $2^{n}$-ten Einheitswurzeln*, Rend. Circ. Mat. Palermo (2)**7**(1958), 185–244 (German). MR**105401**, DOI 10.1007/BF02854527
Richard H. Hudson & Kenneth S. Williams, - Duncan A. Buell, Richard H. Hudson, and Kenneth S. Williams,
*Extension of a theorem of Cauchy and Jacobi*, J. Number Theory**19**(1984), no. 3, 309–340. MR**769786**, DOI 10.1016/0022-314X(84)90075-1 - Richard H. Hudson and Kenneth S. Williams,
*Binomial coefficients and Jacobi sums*, Trans. Amer. Math. Soc.**281**(1984), no. 2, 431–505. MR**722761**, DOI 10.1090/S0002-9947-1984-0722761-X - Emma Lehmer,
*The quintic character of $2$ and $3$*, Duke Math. J.**18**(1951), 11–18. MR**40338** - Emma Lehmer,
*On Euler’s criterion*. part 1, J. Austral. Math. Soc.**1**(1959/1961), no. part 1, 64–70. MR**0108475**, DOI 10.1017/S1446788700025076 - C. R. Matthews,
*Gauss sums and elliptic functions. II. The quartic sum*, Invent. Math.**54**(1979), no. 1, 23–52. MR**549544**, DOI 10.1007/BF01391175 - Joseph B. Muskat and Yun Cheng Zee,
*On the uniqueness of solutions of certain Diophantine equations*, Proc. Amer. Math. Soc.**49**(1975), 13–19. MR**360461**, DOI 10.1090/S0002-9939-1975-0360461-9 - Bennett Setzer,
*The determination of all imaginary, quartic, abelian number fields with class number $1$*, Math. Comp.**35**(1980), no. 152, 1383–1386. MR**583516**, DOI 10.1090/S0025-5718-1980-0583516-2 - L. Stickelberger,
*Ueber eine Verallgemeinerung der Kreistheilung*, Math. Ann.**37**(1890), no. 3, 321–367 (German). MR**1510649**, DOI 10.1007/BF01721360 - Albert Leon Whiteman,
*Theorems analogous to Jacobstahl’s theorem*, Duke Math. J.**16**(1949), 619–626. MR**31940** - Koichi Yamamoto,
*On a conjecture of Hasse concerning multiplicative relations of Gaussian sums*, J. Combinatorial Theory**1**(1966), 476–489. MR**213311**, DOI 10.1016/S0021-9800(66)80018-2

*A Class Number Formula for Certain Quartic Fields*, Carleton Mathematical Series No. 174, Carleton University, Ottawa, 1981.

## Additional Information

- © Copyright 1984 American Mathematical Society
- Journal: Math. Comp.
**43**(1984), 603-613 - MSC: Primary 11D09; Secondary 11E20
- DOI: https://doi.org/10.1090/S0025-5718-1984-0758208-0
- MathSciNet review: 758208