## Least squares methods for elliptic systems

HTML articles powered by AMS MathViewer

- by A. K. Aziz, R. B. Kellogg and A. B. Stephens PDF
- Math. Comp.
**44**(1985), 53-70 Request permission

## Abstract:

A weighted least squares method is given for the numerical solution of elliptic partial differential equations of Agmon-Douglis-Nirenberg type and an error analysis is provided. Some examples are given.## References

- S. Agmon, A. Douglis, and L. Nirenberg,
*Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II*, Comm. Pure Appl. Math.**17**(1964), 35–92. MR**162050**, DOI 10.1002/cpa.3160170104 - I. Babuška, J. T. Oden, and J. K. Lee,
*Mixed-hybrid finite element approximations of second-order elliptic boundary-value problems*, Comput. Methods Appl. Mech. Engrg.**11**(1977), no. 2, 175–206. MR**451771**, DOI 10.1016/0045-7825(77)90058-5 - Garth A. Baker,
*Simplified proofs of error estimates for the least squares method for Dirichlet’s problem*, Math. Comp.**27**(1973), 229–235. MR**327056**, DOI 10.1090/S0025-5718-1973-0327056-0 - James H. Bramble and Joachim A. Nitsche,
*A generalized Ritz-least-squares method for Dirichlet problems*, SIAM J. Numer. Anal.**10**(1973), 81–93. MR**314284**, DOI 10.1137/0710010 - James H. Bramble and Alfred H. Schatz,
*Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions*, Comm. Pure Appl. Math.**23**(1970), 653–675. MR**267788**, DOI 10.1002/cpa.3160230408 - J. H. Bramble and A. H. Schatz,
*Least squares methods for $2m$th order elliptic boundary-value problems*, Math. Comp.**25**(1971), 1–32. MR**295591**, DOI 10.1090/S0025-5718-1971-0295591-8 - James H. Bramble and Ridgway Scott,
*Simultaneous approximation in scales of Banach spaces*, Math. Comp.**32**(1978), no. 144, 947–954. MR**501990**, DOI 10.1090/S0025-5718-1978-0501990-5 - J. H. Bramble and V. Thomée,
*Pointwise bounds for discrete Green’s functions*, SIAM J. Numer. Anal.**6**(1969), 583–590. MR**263265**, DOI 10.1137/0706053 - George J. Fix, Max D. Gunzburger, and R. A. Nicolaides,
*On finite element methods of the least squares type*, Comput. Math. Appl.**5**(1979), no. 2, 87–98. MR**539567**, DOI 10.1016/0898-1221(79)90062-2
G. J. Fix & E. Stephan, - Dennis C. Jespersen,
*A least squares decomposition method for solving elliptic equations*, Math. Comp.**31**(1977), no. 140, 873–880. MR**461948**, DOI 10.1090/S0025-5718-1977-0461948-0
J. L. Lions & E. Magenes, - W. L. Wendland,
*Elliptic systems in the plane*, Monographs and Studies in Mathematics, vol. 3, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. MR**518816**

*Finite Element Methods of the Least Squares Type for Regions With Corners*, Report No. 81-41, December 16, 1981, Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, Virginia 23665.

*Non-Homogeneous Boundary Value Problems and Applications*, Vol. 1, Springer, Berlin, 1972. J. Roǐtberg & Z. Šeftel, "A theorem about the complete set of isomorphisms for systems elliptic in the sense of Douglis and Nirenberg,"

*Ukrain. Mat. Zh.*, 1975, pp. 447-450. R. Temam,

*Navier-Stokes Equations*, North-Holland, Amsterdam, New York, 1977.

## Additional Information

- © Copyright 1985 American Mathematical Society
- Journal: Math. Comp.
**44**(1985), 53-70 - MSC: Primary 65N30; Secondary 76D07
- DOI: https://doi.org/10.1090/S0025-5718-1985-0771030-5
- MathSciNet review: 771030