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A Note on the Diophantine Equation

x3 + y3 + z3 = 3

By J. W. S. Cassels

Abstract. Any integral solution of the title equation has x = y = z (9).

The report of Scarowsky and Boyarsky [3] that an extensive computer search has

failed to turn up any further integral solutions of the title equation prompts me to

give the proof of a result which I noted many years ago and which might be of use in

further work (cf. footnote on p. 505 of [2]).

Theorem. Any integral solution of

(1) x3+y3 + z3 = 3

has

(2) X=y = Z(9).

Proof. Trivially,

(3) X-J-Z-l(3).

We work in the ring Z[p] of Eisenstein integers, where p is a cube root of unity. If

a e Z[p] is prime to 3, then there is precisely one unit e = ±pJ (j = 0,1,2) such

that ea = 1 (3). The supplement [1] to the law of cubic reciprocity states that if

m e Z[p] is prime, m = 1 (3), then 3 is a cubic residue of m in Z[p] precisely when

m = a (9) for some a e Z. It follows that if a e Z[p], a = 1 (3) and if 3 is congruent

to a cube modulo a, then a = b (9) for some b e Z.

Put

a = -p2x - py,

so

a = x +(x — y)p = 1 (3)

by (3). By (1) we have z3 = 3 (a), so the preceding remarks apply. Hence x - y = 0

(9). Finally, (2) follows by symmetry.
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