A Note on the Diophantine Equation

$$
x^{3}+y^{3}+z^{3}=3
$$

By J. W. S. Cassels

$$
\text { Abstract. Any integral solution of the title equation has } x \equiv y \equiv z \text { (9). }
$$

The report of Scarowsky and Boyarsky [3] that an extensive computer search has failed to turn up any further integral solutions of the title equation prompts me to give the proof of a result which I noted many years ago and which might be of use in further work (cf. footnote on p. 505 of [2]).

Theorem. Any integral solution of

$$
\begin{equation*}
x^{3}+y^{3}+z^{3}=3 \tag{1}
\end{equation*}
$$

has

$$
x \equiv y \equiv z(9)
$$

Proof. Trivially,

$$
\begin{equation*}
x \equiv y \equiv z \equiv 1(3) \tag{3}
\end{equation*}
$$

We work in the ring $\mathbf{Z}[\rho]$ of Eisenstein integers, where ρ is a cube root of unity. If $\alpha \in \mathbf{Z}[\rho]$ is prime to 3 , then there is precisely one unit $\varepsilon= \pm \rho^{j}(j=0,1,2)$ such that $\varepsilon \alpha \equiv 1$ (3). The supplement [1] to the law of cubic reciprocity states that if $\pi \in \mathbf{Z}[\rho]$ is prime, $\pi \equiv 1$ (3), then 3 is a cubic residue of π in $\mathbf{Z}[\rho]$ precisely when $\pi \equiv a(9)$ for some $a \in \mathbf{Z}$. It follows that if $\alpha \in \mathbf{Z}[\rho], \alpha \equiv 1$ (3) and if 3 is congruent to a cube modulo α, then $\alpha \equiv b$ (9) for some $b \in \mathbf{Z}$.

Put

$$
\alpha=-\rho^{2} x-\rho y,
$$

so

$$
\alpha=x+(x-y) \rho \equiv 1 \text { (3) }
$$

by (3). By (1) we have $z^{3} \equiv 3(\alpha)$, so the preceding remarks apply. Hence $x-y \equiv 0$ (9). Finally, (2) follows by symmetry.

Department of Pure Mathematics and Mathematical Statistics
University of Cambridge 16 Mill Lane
Cambridge CB2 1SB, England

1. G. Eisenstein, "Nachtrag zum cubischen Reciprocitätssatze . . ." J. Reine Angew. Math., v. 28, 1844, pp. 28-35.
2. L. J. Mordell, "Integer solutions of $x^{2}+y^{2}+z^{2}+2 x y z=n$," J. London Math. Soc., v. 28, 1953, pp. 500-510.
3. M. SCarowsky \& A. Boyarsky, "A note on the Diophantine equation $x^{n}+y^{n}+z^{n}=3$," Math. Comp., v. 42, 1984, pp. 235-236.
