A note on the Diophantine equation $x^ 3+y^ 3+z^ 3=3$
HTML articles powered by AMS MathViewer
- by J. W. S. Cassels PDF
- Math. Comp. 44 (1985), 265-266 Request permission
Abstract:
Any integral solution of the title equation has $x \equiv y \equiv z$ (9).References
-
G. Eisenstein, "Nachtrag zum cubischen Reciprocitätssatze...." J. Reine Angew. Math., v. 28, 1844, pp. 28-35.
- L. J. Mordell, On the integer solutions of the equation $x^2+y^2+z^2+2xyz=n$, J. London Math. Soc. 28 (1953), 500–510. MR 56619, DOI 10.1112/jlms/s1-28.4.500
- Manny Scarowsky and Abraham Boyarsky, A note on the Diophantine equation $x^{n}+y^{n}+z^{n}=3$, Math. Comp. 42 (1984), no. 165, 235–237. MR 726000, DOI 10.1090/S0025-5718-1984-0726000-9
Additional Information
- © Copyright 1985 American Mathematical Society
- Journal: Math. Comp. 44 (1985), 265-266
- MSC: Primary 11D25
- DOI: https://doi.org/10.1090/S0025-5718-1985-0771049-4
- MathSciNet review: 771049