
MATHEMATICS OF COMPUTATION
VOLUME 44. NUMBER 170
APRIL. 19X5. PACIES 519-521

Modular Multiplication Without Trial Division

By Peter L. Montgomery

Abstract. Let N > 1. We present a method for multiplying two integers (called N-residues)

modulo N while avoiding division by N. N-residues are represented in a nonstandard way, so

this method is useful only if several computations are done modulo one N. The addition and

subtraction algorithms are unchanged.

1. Description. Some algorithms [1], [2], [4], [5] require extensive modular arith-

metic. We propose a representation of residue classes so as to speed modular

multiplication without affecting the modular addition and subtraction algorithms.

Other recent algorithms for modular arithmetic appear in [3], [6].

Fix N > 1. Define an A'-residue to be a residue class modulo N. Select a radix R

coprime to N (possibly the machine word size or a power thereof) such that R > N

and such that computations modulo R are inexpensive to process. Let R~l and N' be

integers satisfying 0 < R'x < N and 0 < N' < R and RRX - NN' = 1.

For 0 < i < N, let /' represent the residue class containing iR~x mod N. This is a

complete residue system. The rationale behind this selection is our ability to quickly

compute TRl mod N from T if 0 < T < RN, as shown in Algorithm REDC:

function REDC(r)

m «- iTmod R)N' mod R [so 0 < m < R]

t <-(T+ mN)/R

if t > N then return t - N else return t ■

To validate REDC, observe mN = TN'N = -Tmod R, so t is an integer. Also,

tR = Tmod N so t = TR'X mod N. Thirdly, 0 < T + mN < RN + RN, so 0 < t <

2N.

If R and N are large, then T + mN may exceed the largest double-precision value.

One can circumvent this by adjusting m so -R < m < 0.

Given two numbers x and y between 0 and N - 1 inclusive, let z = REDC(xy).

Then z = (xy)R~x mod N, so (xR-l)(yR~x) = zRx mod N. Also, 0 < z < N, so z is

the product of x and y in this representation.

Other algorithms for operating on N-residues in this representation can be derived

from the algorithms normally used. The addition algorithm is unchanged, since

xR~x + yR~x = zR~x mod N if and only if x + y = z mod N. Also unchanged are

Received December 19, 1983.

1980 Mathematics Subject Classification. Primary 10A30; Secondary 68C05.

Key words and phrases. Modular arithmetic, multiplication.

519

©1985 American Mathematical Society

0025-5718/85 $1.00 + $.25 per page

520 PETER L. MONTGOMERY

the algorithms for subtraction, negation, equality/inequality test, multiplication by

an integer, and greatest common divisor with N.

To convert an integer x to an ^-residue, compute xR mod N. Equivalently,

compute REDC((xmod N)(R2mod N)). Constants and inputs should be converted

once, at the start of an algorithm. To convert an ^-residue to an integer, pad it with

leading zeros and apply Algorithm REDC (thereby multiplying it by R'1 mod N).

To invert an TV-residue, observe (xR~x)~l = zR'1 mod N if and only if z =

R2x~l mod N. For modular division, observe (xR~l)(yR~x)~l = zR~x mod N if and

only if z = «(REDCi»)-1 mod JV.

The Jacobi symbol algorithm needs an extra negation if (R/N) = -1, since

(xR~x/N) = (x/N)(R/N).

Let M|N. A change of modulus from N (using R = R(N)) to M (using R = R(M))

proceeds normally if R(M) = R(N). If R(M) ¥= R(N), multiply each jV-residue by

(R(N)/R(M))~x mod M during the conversion.

2. Multiprecision Case. If N and R are multiprecision, then the computations of

m and mN within REDC involve multiprecision arithmetic. Let b be the base

used for multiprecision arithmetic, and assume R = b", where n > 0. Let T =

iT2„-iT2„_2 ■ • • T0)h satisfy 0 < T < RN. We can compute TR~l mod N with n

single-precision multiplications modulo R, n multiplications of single-precision

integers by N, and some additions:

c^O

for z := 0 step 1 to n - 1 do

W+.-i ••• 7/)» «-(0W, ••• T,)h +N*(T,N'mod R)

{cTl+H)b<-c + d+Tl+H

[Tis a multiple of b' + x]

[T + cb' + n+x is congruent mod N to the original T]

[0 < T < (R + b')N]

end for

¡f(cr2M_, ■•• T„)h>Nthen

return (cT2„_x ■■• T„)b- N

else

return (T2n_x •■■ T„)b

end if

Here variable c represents a delayed carry—it will always be 0 or 1.

3. Hardware Implementation. This algorithm is suitable for hardware or software.

A hardware implementation can use a variation of these ideas to overlap the

multiplication and reduction phases. Suppose R = 2" and N is odd. Let x =

ixn-ixn-2 '■' xo)2> where each x¡ is 0 or 1. Let 0 < y < N. To compute

xyR~l mod N, set S0 = 0 and Si+1 to (S, + x,y)/2 or (5, + x¡y + N)/2, whichever

is an integer, for i = 0,1,2,...,« — 1. By induction, 2'S, = (x,_x ■ ■ ■ x0)ymod N

and 0 < Si < N + y < 2N. Therefore xyR1 mod N is either S„ or S„ - N.

System Development Corporation

2500 Colorado Avenue

Santa Monica, California 90406

MODULAR MULTIPLICATION WITHOUT TRIAL DIVISION 521

1. J. M. Pollard, "Theorems on factorization and primality testing," Proc. Cambridge Philos. Soc, v.

76, 1974, pp. 521-528.

2. J. M. Pollard, "A Monte Carlo method for factorization," BIT, v. 15,1975, p. 331-334.

3. George B. Purdy, "A carry-free algorithm for finding the greatest common divisor of two integers,"

Comput. Math. Appl. v. 9,1983, pp. 311-316.

4. R. L. Rivest, A. Shamir & L. Adleman, "A method for obtaining digital signatures and public-key

cryptosystems," Comm. ACM, v. 21, 1978, pp. 120-126; reprinted in Comm. ACM, v. 26, 1983, pp.

96-99.

5. J. T. Schwartz, "Fast probabilistic algorithms for verification of polynomial identities," J. Assoc.

Comput. Mach., v. 27, 1980, pp. 701-717.

6. Gustavus J. Simmons, "A redundant number system that speeds up modular arithmetic," Abstract

801-10-427, Abstracts Amer. Math. Soc, v. 4, 1983, p. 27.

