Modular Multiplication Without Trial Division

By Peter L. Montgomery

Abstract. Let \(N > 1 \). We present a method for multiplying two integers (called \(N\)-residues) modulo \(N \) while avoiding division by \(N \). \(N\)-residues are represented in a nonstandard way, so this method is useful only if several computations are done modulo one \(N \). The addition and subtraction algorithms are unchanged.

1. Description. Some algorithms [1], [2], [4], [5] require extensive modular arithmetic. We propose a representation of residue classes so as to speed modular multiplication without affecting the modular addition and subtraction algorithms.

Other recent algorithms for modular arithmetic appear in [3], [6].

Fix \(N > 1 \). Define an \(N\)-residue to be a residue class modulo \(N \). Select a radix \(R \) coprime to \(N \) (possibly the machine word size or a power thereof) such that \(R > N \) and such that computations modulo \(R \) are inexpensive to process. Let \(R^{-1} \) and \(N' \) be integers satisfying \(0 < R^{-1} < N \) and \(0 < N' < R \) and \(RR^{-1} - NN' = 1 \).

For \(0 \leq i < N \), let \(i \) represent the residue class containing \(iR^{-1} \mod N \). This is a complete residue system. The rationale behind this selection is our ability to quickly compute \(TR^{-1} \mod N \) from \(T \) if \(0 \leq T < RN \), as shown in Algorithm REDC:

\[
\text{function REDC}(T) \\quad \\text{if } t \geq N \text{ then return } t - N \text{ else return } t
\]

To validate REDC, observe \(mN = TN'N = -T \mod R \), so \(t \) is an integer. Also, \(tR = T \mod N \) so \(t = TR^{-1} \mod N \). Thirdly, \(0 \leq T + mN < RN + RN \), so \(0 \leq t < 2N \).

If \(R \) and \(N \) are large, then \(T + mN \) may exceed the largest double-precision value. One can circumvent this by adjusting \(m \) so \(-R < m \leq 0\).

Given two numbers \(x \) and \(y \) between \(0 \) and \(N - 1 \) inclusive, let \(z = \text{REDC}(xy) \). Then \(z = (xy)R^{-1} \mod N \), so \((xR^{-1})(yR^{-1}) = zR^{-1} \mod N \). Also, \(0 \leq z < N \), so \(z \) is the product of \(x \) and \(y \) in this representation.

Other algorithms for operating on \(N\)-residues in this representation can be derived from the algorithms normally used. The addition algorithm is unchanged, since \(xR^{-1} + yR^{-1} = zR^{-1} \mod N \) if and only if \(x + y = z \mod N \). Also unchanged are...
the algorithms for subtraction, negation, equality/inequality test, multiplication by an integer, and greatest common divisor with N.

To convert an integer x to an N-residue, compute $xR \mod N$. Equivalently, compute $\text{REDC}((x \mod N)(R^2 \mod N))$. Constants and inputs should be converted once, at the start of an algorithm. To convert an N-residue to an integer, pad it with leading zeros and apply Algorithm REDC (thereby multiplying it by $R^{-1} \mod N$).

To invert an N-residue, observe $(xR^{-1})^{-1} \equiv zR^{-1} \mod N$ if and only if $z \equiv R^2x^{-1} \mod N$. For modular division, observe $(xR^{-1})(yR^{-1})^{-1} \equiv zR^{-1} \mod N$ if and only if $z \equiv x(\text{REDC}(y))^{-1} \mod N$.

The Jacobi symbol algorithm needs an extra negation if $(R/N) = -1$, since $(xR^{-1}N) = (x/N)(R/N)$.

Let $M|N$. A change of modulus from N (using $R = R(N)$) to M (using $R = R(M)$) proceeds normally if $R(M) = R(N)$. If $R(M) \neq R(N)$, multiply each N-residue by $(R(N)/R(M))^{-1} \mod N$ during the conversion.

2. Multiprecision Case. If N and R are multiprecision, then the computations of m and mN within REDC involve multiprecision arithmetic. Let b be the base used for multiprecision arithmetic, and assume $R = b^n$, where $n > 0$. Let $T = (T_{2n-1}T_{2n-2} \cdots T_0)_b$ satisfy $0 \leq T < RN$. We can compute $TR^{-1} \mod N$ with n single-precision multiplications modulo R, n multiplications of single-precision integers by N, and some additions:

```plaintext
for i := 0 step 1 to n - 1 do
    (dT_{i+n-1} \cdots T_i)_b \leftarrow (dT_{i+n-1} \cdots T_i)_b + N*(T_iN^i \mod R)
    (cT_{i+n})_b \leftarrow c + d + T_{i+n}
    [T is a multiple of $b^{i+1}$]
    [T + cb^{i+n+1} is congruent mod $N$ to the original $T$]
    [0 \leq T < (R + b^i)N]
end for
if (cT_{2n-1} \cdots T_n)_b \geq N then
    return (cT_{2n-1} \cdots T_n)_b - N
else
    return (T_{2n-1} \cdots T_n)_b
end if
```

Here variable c represents a delayed carry—it will always be 0 or 1.

3. Hardware Implementation. This algorithm is suitable for hardware or software. A hardware implementation can use a variation of these ideas to overlap the multiplication and reduction phases. Suppose $R = 2^n$ and N is odd. Let $x = (x_{n-1}x_{n-2} \cdots x_0)_2$, where each x_i is 0 or 1. Let $0 \leq y < N$. To compute $xyR^{-1} \mod N$, set $S_0 = 0$ and S_{i+1} to $(S_i + x_iy)/2$ or $(S_i + x_iy + N)/2$, whichever is an integer, for $i = 0, 1, 2, \ldots, n - 1$. By induction, $2S_i \equiv (x_{i-1} \cdots x_0)y \mod N$ and $0 \leq S_i < N + y < 2N$. Therefore $xyR^{-1} \mod N$ is either S_n or $S_n - N$.

System Development Corporation
2500 Colorado Avenue
Santa Monica, California 90406