## On the rate of convergence for the approximation of nonlinear problems

HTML articles powered by AMS MathViewer

- by J. Descloux, J. Rappaz and R. Scholz PDF
- Math. Comp.
**45**(1985), 51-64 Request permission

## Abstract:

This paper shows how to obtain from estimates on linear problems error bounds in various norms for the approximation of nonlinear problems. The theory developed in this paper is applied to finite element methods for approximating the problem $- \Delta u = \lambda {e^u}$ and the Navier-Stokes equations.## References

- Herbert Amann,
*Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces*, SIAM Rev.**18**(1976), no. 4, 620–709. MR**415432**, DOI 10.1137/1018114 - F. Brezzi, J. Rappaz, and P.-A. Raviart,
*Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions*, Numer. Math.**36**(1980/81), no. 1, 1–25. MR**595803**, DOI 10.1007/BF01395985 - Philippe G. Ciarlet,
*The finite element method for elliptic problems*, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR**0520174** - Jean Descloux and Jacques Rappaz,
*Approximation of solution branches of nonlinear equations*, RAIRO Anal. Numér.**16**(1982), no. 4, 319–349 (English, with French summary). MR**684829** - V. Girault and P.-A. Raviart,
*Finite element approximation of the Navier-Stokes equations*, Lecture Notes in Mathematics, vol. 749, Springer-Verlag, Berlin-New York, 1979. MR**548867**
P. Grisvard, - Claes Johnson and Vidar Thomée,
*Error estimates for some mixed finite element methods for parabolic type problems*, RAIRO Anal. Numér.**15**(1981), no. 1, 41–78 (English, with French summary). MR**610597** - Herbert B. Keller,
*Numerical solution of bifurcation and nonlinear eigenvalue problems*, Applications of bifurcation theory (Proc. Advanced Sem., Univ. Wisconsin, Madison, Wis., 1976) Publ. Math. Res. Center, No. 38, Academic Press, New York, 1977, pp. 359–384. MR**0455353** - R. B. Kellogg and J. E. Osborn,
*A regularity result for the Stokes problem in a convex polygon*, J. Functional Analysis**21**(1976), no. 4, 397–431. MR**0404849**, DOI 10.1016/0022-1236(76)90035-5 - J. Nitsche,
*Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens*, Numer. Math.**11**(1968), 346–348 (German). MR**233502**, DOI 10.1007/BF02166687 - Joachim Nitsche,
*$L_{\infty }$-convergence of finite element approximations*, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977, pp. 261–274. MR**0488848** - P.-A. Raviart and J. M. Thomas,
*A mixed finite element method for 2nd order elliptic problems*, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977, pp. 292–315. MR**0483555** - Reinhard Scholz,
*$L_{\infty }$-convergence of saddle-point approximations for second order problems*, RAIRO Anal. Numér.**11**(1977), no. 2, 209–216, 221 (English, with French summary). MR**448942**, DOI 10.1051/m2an/1977110202091 - R. Scholz,
*Optimal $L_{\infty }$-estimates for a mixed finite element method for second order elliptic and parabolic problems*, Calcolo**20**(1983), no. 3, 355–377 (1984). MR**761790**, DOI 10.1007/BF02576470
R. Temam, - Miloš Zlámal,
*Curved elements in the finite element method. I*, SIAM J. Numer. Anal.**10**(1973), 229–240. MR**395263**, DOI 10.1137/0710022

*Singularité des Solutions du Problème de Stokes dans un Polygone*, Séminaires d’Analyse Numérique, Paris, 1978.

*Navier-Stokes equations*, North-Holland, Amsterdam, 1977.

## Additional Information

- © Copyright 1985 American Mathematical Society
- Journal: Math. Comp.
**45**(1985), 51-64 - MSC: Primary 65J15; Secondary 65N30, 76D05
- DOI: https://doi.org/10.1090/S0025-5718-1985-0790644-X
- MathSciNet review: 790644