On the asymptotic convergence of collocation methods with spline functions of even degree
HTML articles powered by AMS MathViewer
 by J. Saranen and W. L. Wendland PDF
 Math. Comp. 45 (1985), 91108 Request permission
Abstract:
We investigate the collocation of linear onedimensional strongly elliptic integrodifferential or, more generally, pseudodifferential equations on closed curves by evendegree polynomial splines. The equations are collocated at the respective midpoints subject to uniform nodal grids of the evendegree Bsplines. We prove quasioptimal and optimal order asymptotic error estimates in a scale of Sobolev spaces. The results apply, in particular, to boundary element methods used for numerical computations in engineering applications. The equations considered include Fredholm integral equations of the second and the first kind, singular integral equations involving Cauchy kernels, and integrodifferential equations having convolutional or constant coefficient principal parts, respectively. The error analysis is based on an equivalence between the collocation and certain variational methods with different degree splines as trial and as test functions. We further need to restrict our operators essentially to pseudodifferential operators having convolutional principal part. This allows an explicit Fourier analysis of our operators as well as of the spline spaces in terms of trigonometric polynomials providing Babuška’s stability condition based on strong ellipticity. Our asymptotic error estimates extend partly those obtained by D. N. Arnold and W. L. Wendland from the case of odddegree splines to the case of evendegree splines.References

M. S. Abou ElSeoud, Numerische Behandlung von schwach singulären Integralgleichungen erster Art, Doctoral Dissertation, Technische Hochschule Darmstadt, Germany, 1979.
 M. S. Abou ElSeoud, Kollokationsmethode für schwach singuläre Integralgleichungen erster Art, Z. Angew. Math. Mech. 59 (1979), no. 3, T45–T47 (German). MR 533975
 M. S. Agranovič, Elliptic singular integrodifferential operators, Uspehi Mat. Nauk 20 (1965), no. 5 (125), 3–120 (Russian). MR 0198017
 M. S. Agranovič, Spectral properties of elliptic pseudodifferential operators on a closed curve, Funktsional. Anal. i Prilozhen. 13 (1979), no. 4, 54–56 (Russian). MR 554412
 M. A. Aleksidze, Reshenie granichnykh zadach metodom razlozheniya po neortogonal′nym funktsiyam, “Nauka”, Moscow, 1978 (Russian). MR 527813
 Philip M. Anselone, Collectively compact operator approximation theory and applications to integral equations, PrenticeHall Series in Automatic Computation, PrenticeHall, Inc., Englewood Cliffs, N.J., 1971. With an appendix by Joel Davis. MR 0443383
 Douglas N. Arnold and Wolfgang L. Wendland, On the asymptotic convergence of collocation methods, Math. Comp. 41 (1983), no. 164, 349–381. MR 717691, DOI 10.1090/S00255718198307176916
 Kendall E. Atkinson, A survey of numerical methods for the solution of Fredholm integral equations of the second kind, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. MR 0483585
 JeanPierre Aubin, Approximation of elliptic boundaryvalue problems, Pure and Applied Mathematics, Vol. XXVI, WileyInterscience [A division of John Wiley & Sons, Inc.], New YorkLondonSydney, 1972. MR 0478662
 Ivo Babuška and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 1–359. With the collaboration of G. Fix and R. B. Kellogg. MR 0421106
 Christopher T. H. Baker, The numerical treatment of integral equations, Monographs on Numerical Analysis, Clarendon Press, Oxford, 1977. MR 0467215
 J. L. Blue, Boundary integral solutions of Laplace’s equation, Bell System Tech. J. 57 (1978), no. 8, 2797–2822. MR 508234, DOI 10.1002/j.15387305.1978.tb02177.x G. Bruhn & W. L. Wendland, "Über die näherungsweise Lösung von linearen Funktionalgleichungen," Funktionalanalysis, Approximationstheorie, Numerische Mathematik (L. Collatz, ed.), Intern. Ser. Num. Math., v. 7, Birkhäuser, Basel, 1967, pp. 136144.
 Søren Christiansen, Numerical solution of an integral equation with a logarithmic kernel, Nordisk Tidskr. Informationsbehandling (BIT) 11 (1971), 276–287. MR 300481, DOI 10.1007/bf01931809
 M. Djaoua, A method of calculation of lifting flows around $2$dimensional cornershaped bodies, Math. Comp. 36 (1981), no. 154, 405–425. MR 606504, DOI 10.1090/S00255718198106065047
 M. Durand, Layer potentials and boundary value problems for the Helmholtz equation in the complement of a thin obstacle, Math. Methods Appl. Sci. 5 (1983), no. 3, 389–421. MR 716663, DOI 10.1002/mma.1670050126 P. J. T. Filippi, "Layer potentials and acoustic diffraction," Sound Vibration, v. 54, 1977, pp. 473500.
 J. Giroire and J.C. Nédélec, Numerical solution of an exterior Neumann problem using a double layer potential, Math. Comp. 32 (1978), no. 144, 973–990. MR 495015, DOI 10.1090/S00255718197804950158
 John K. Hayes, David K. Kahaner, and Richard G. Kellner, An improved method for numerical conformal mapping, Math. Comp. 26 (1972). MR 301176, DOI 10.1090/S00255718197203011768
 G. C. Hsiao, P. Kopp, and W. L. Wendland, A Galerkin collocation method for some integral equations of the first kind, Computing 25 (1980), no. 2, 89–130 (English, with German summary). MR 620387, DOI 10.1007/BF02259638
 George C. Hsiao and Wolfgang L. Wendland, A finite element method for some integral equations of the first kind, J. Math. Anal. Appl. 58 (1977), no. 3, 449–481. MR 461963, DOI 10.1016/0022247X(77)90186X
 G. C. Hsiao and W. L. Wendland, The AubinNitsche lemma for integral equations, J. Integral Equations 3 (1981), no. 4, 299–315. MR 634453 J. L. Lions & E. Magenes, NonHomogeneous Boundary Value Problems and Applications I, SpringerVerlag, Berlin and New York, 1972. S. G. Michlin & S. Prössdorf, Singuläre Integraloperatoren, AkademieVerlag, Berlin, 1980.
 N. I. Muskhelishvili, Singular integral equations, WoltersNoordhoff Publishing, Groningen, 1972. Boundary problems of functions theory and their applications to mathematical physics; Revised translation from the Russian, edited by J. R. M. Radok; Reprinted. MR 0355494 G. G. Mustoe & I. C. Mathews, Direct Boundary Integral Methods, Point Collocation and Variational Procedures, Preprint, Univ. Coll. Swansea, U.K., 1982.
 P. M. Prenter, A collection method for the numerical solution of integral equations, SIAM J. Numer. Anal. 10 (1973), 570–581. MR 327064, DOI 10.1137/0710051 J. Saranen & W. L. Wendland, "The Fourier series representation of pseudodifferential operators on closed curves," Complex Variables. (To appear.)
 G. Schmidt, On spline collocation for singular integral equations, Math. Nachr. 111 (1983), 177–196. MR 725777, DOI 10.1002/mana.19831110108
 R. Seeley, Topics in pseudodifferential operators, PseudoDiff. Operators (C.I.M.E., Stresa, 1968) Edizioni Cremonese, Rome, 1969, pp. 167–305. MR 0259335
 G. T. Symm, Integral equation methods in potential theory. II, Proc. Roy. Soc. London Ser. A 275 (1963), 33–46. MR 154076, DOI 10.1098/rspa.1963.0153
 François Trèves, Introduction to pseudodifferential and Fourier integral operators. Vol. 2, University Series in Mathematics, Plenum Press, New YorkLondon, 1980. Fourier integral operators. MR 597145
 V. V. Voronin and V. A. Cecoho, An interpolation method for the solution of an integral equation of the first kind with a logarithmic singularity, Dokl. Akad. Nauk SSSR 216 (1974), 1209–1211 (Russian). MR 0487361 J. O. Watson, "Advanced implementation of the boundary element method for two and threedimensional elastostatics," Developments in Boundary Element Methods1 (P. K. Banerjee and R. Butterfield, eds.), Appl. Sci. Publ. TLD, London, 1979, pp. 3163.
 W. L. Wendland, Boundary element methods and their asymptotic convergence, Theoretical acoustics and numerical techniques, CISM Courses and Lect., vol. 277, Springer, Vienna, 1983, pp. 135–216. MR 762829
Additional Information
 © Copyright 1985 American Mathematical Society
 Journal: Math. Comp. 45 (1985), 91108
 MSC: Primary 65N99; Secondary 35S99
 DOI: https://doi.org/10.1090/S00255718198507906463
 MathSciNet review: 790646