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On Shapiro's Cyclic Inequality for N = 13

By B. A. Troesch

Abstract. A cyclic sum S(x) ■ T.x¡/(xj+i + x, + 2) 's formed with the N components of a

vector x, where xN+l « JCj, xN+2 =• x2, and where all denominators are positive and all

numerators are nonnegative. It is known that there exist vectors x for which S(x) < N/2 if

N > 14 and even, and if N > 25. It has been proved that the inequality S(\) > N/2 holds for

N ^ 12. Although it has been conjectured repeatedly that the inequality also holds for odd N

between 13 and 23. this has apparently not yet been proved. Here we will confirm that the

inequality indeed holds for N = 13.

1. Introduction. In his book Analytic Inequalities [9], Mitrinovic describes the

interesting history of a problem suggested by H. S. Shapiro [13], The conjecture that

the solution should exhibit a symmetric structure seemed reasonable, considering the

near-symmetry of the problem, but the true solution turned out to be more subtle.

A cyclic sum S(x) = Ix,/(x,+1 4- xi+2) is formed with the N components of a

vector x, where xN+x = xx, xN+2 = x2, and where all denominators are positive and

all numerators nonnegative. The vector x with all components xk = 1 furnishes

S = N/2. If, for all N and all x, the inequality S(x) > N/2 were to hold, the

problem would probably not have attracted particular attention (see its mention in

[7]). However, Lighthill [5] showed that the inequality does not hold for N = 20, and

Zulauf sharpened this result to N = 14 [14]. On the other hand, Mordell [10]

conjectured that a nonsymmetric x could be found for N > 7 such that S(x) < N/2.

In steps the inequality was proved for N = 8 [4], N = 10 [11], and N = 12 [6], and

then it follows from a general property [3] that S > N/2 is true for N < 12. For odd

N the counterexamples turned out to be harder to come by, but they were found

down to N = 25 [1], [2], [8]. The reason for the difference between odd and even N 's

was explained in [12]. Although it has been conjectured repeatedly that the inequal-

ity also holds for odd N between 13 and 23, this has apparently not yet been proved.

Here we will confirm that the inequality indeed holds for N = 13.

For odd N between 13 and 23 there is apparently no general method available to

prove the inequality except the approach used by Nowosad [11] and Godunova and

Levin [6]: One has to consider separately all the cases where the zero components of

the vector x appear in various positions. For large N the number of possibilities

increases very rapidly, as the analysis in [11] and [6] shows. However, the number of

cases to be discussed can be reduced significantly by taking advantage of two
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additional facts stated in Sections 2 and 3. Whereas the basic result of Diananda [3]

permits the conclusion that the inequality is satisfied for N = 11 because of the

result in [6], it does not decide the question for odd N > 13.

There exists at most one relative minimum for every case. This result, derived in

[11], is important because the problem is nonlinear and is solved by minimizing the

sum S for each case. Of course, when the stationary point is shown to be unique, it

need not be checked for a minimum, because the boundary of the domain, i.e.,

xk -* 0, is treated in connection with another case, and the sum S(x) must only be

checked against A/2. There is also the possibility that no stationary point exists. If

this cannot be proved, or if the stationary points found are not at a relative

minimum, then no decision is reached. This means that it is not a priori clear that a

decision can be reached in all cases, regardless of the effort spent, say, in a numerical

search.

The different cases are best characterized by listing the number of nonzero

components of x after each zero. At the same time, only the nonvanishing terms of x

will be numbered. For example, the notation (4, 1, 5) represents a case for N = 13,

namely,

A]   U AT   Al A<  A£U  Xi  UX-1    A Q    An    AjQ,

with the sum

A*3  "T  A*4 A*4 ~r  A*5 X$ A*£ ) \ -A-7

j        X7 A"8 , x9 ,    ^IQ    ,   ££l

^  Ao     1     Ag An   ~1~   Ain 10 1 1 2

The three segments arex2xix4xs, x6, x2 x8 x9 xxoxx.

2. The Pivotal Ratios. Let us call the group of terms between two zeros a segment.

For instance, the example above consists of a 4-segment, a 1-segment, and a

5-segment. A 7-segment would be

AiUAtA-iA^AcAííA-iAqVJAq

with the segment sum

C    = X2 , *3 XA X5 X6 X7        Xs

Ai    i   A^ "^4        *^5 5 6 6 7 7 ~^~      8 8 9

At a stationary value of 5, the leading ratios of all segments have the same value.

This is easy to see by considering as a typical example the 7-segment. Introducing in

the usual manner [6], [11] the vector y by

y i = x2i y2 ~ x3 ' xii y^ ~ x^ < x5,... ,_y8 = xg,

we have

s = y± + yi + y* -y5 + y6 -yi _1 + ä + j,s-ä + j'7

(2.1) y2 * y*

| y* + y6 - yi    l + Zi±Zz_ i + y±_l + h.
y5 y6 yi        y»
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For a stationary value, the vanishing partial derivatives dS/dyk give

-yi/y2 + y2/y i = °>

-yi/y-i - yJy-i + y%/y* - ye/y3 + yi/y3 + y^/y* = 0,

yjy-i - y^/y* ~ ys/y* + V^ - yVy* + av^s = 0,

-V^ + V^ - jv^s - Jó/fs + jV-Fs + y5/y6 = °>

V>3 - ye/y a + V^s - Vä - yi/ye + yjyn = 0,

-yi/y-i + J7A4 - yVys + yVye - ye/yi + jV-Vs = 0,

-77A8 + y%/y<> = 0.

The last equation follows from the observation that the next segment starts with the

simple ratio ys/y9.

By adding up all the middle equations we find that, denoting by u the common

ratio of the first and of the last terms in each segment,

« = 7iA2 = >y>3 = yi/y« = y»/y9-

This result is very helpful in the following way. In the example above, the case

(4, 1, 5) is spelled out; another case would be (1, 4, 5). But the solution of the

nonlinear system must be the same, because if the leading terms are identical the

solution for the stationary vector y is also the same, except for the interchanged

indices. Therefore, among all the possible combinations only those with increasing

segment length need to be considered. For N = 10 and N = 12 this is of little

significance, but the larger the A, the more important this observation becomes.

3. A Reduction in the Number of Unknowns. Nowosad [11] has proved the

following helpful result. If the relation between x and y, as introduced above, is

written as x = Ay, and the matrix A is symmetric with respect to the second

diagonal or can be put into such a form by a cyclic shift, then the cyclic sum is not

altered by the transformation tj = By, where B is the zero matrix, except for ones in

the second diagonal. In other words, S(r\) = S(y) everywhere—in particular, at the

stationary points and in their neighborhoods. This fact, together with the theorem

that S(y) can have at most one relative minimum for yk > 0, furnishes important

relations between the components of y.

We want to show that a modification of this property can be derived in all cases,

without the assumption of the second diagonal symmetry. The property will be

explained with a specific example, but the general proof would follow the same line

of argument. In Section 2 we have considered the example of a segment of length 7;

the y2 to yn appear only in this particular segment, and the coupling to the

neighboring segments is accomplished by yx andy8.

We now define t\ by the nonlinear transformation r\ = Ty:

1i -ttf

!?2 = J^s/Fs =J'2.

yi = y2ys/y3,

v» = y2y%/y2 = y»-
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Then, with yj the leading element of the following segment,

Vg ^ ygy/yj = y9,

Since the coupling elements yx and y9 remain unchanged, the transformation T can

be carried out on each segment separately. Inserting the y, we obtain

SM = V1/V2 + i»7(1A8 - IA7 + Vie - lAs + V*U - IA3)

+ Î|6(1/TJ7 -  1/1J6 +   1/TJj -  1/TÏ4 +  IA3)

+ T,5(l/7,6-  l/7,5+  l/7,4 -1/T,3)

+ Ï)4V1A5 - *A4 +  !A3) + T)3(1A4 - IA3) + V2/V3-

But this turns out to be exactly the same function as (2.1) for this and all other

segments, and, hence,

S(y) = S(Ty).

Since there is at most one relative minimum, we conclude that at such a point

y2y« = >,3>'7 = 747é = 7575.

or, denoting the ratioyk/yk + x by rk,

u = r2 = r7>   r3 = r6,   r4 = r5.

Quite generally, it can be shown for ay-segment that u = r2 = r,, r3 = r._x,..., and,

finally,

0/2 = 0/2+2   for; even,       0/2+1/2 = 0/2+3/2   for; odd.

For segments up to length 5 (see below), these relations follow also directly from the

equations for the stationary value. The number of unknowns is therefore reduced

roughly by a factor of 2.

4. Cases with Short Segments Only. We will show that S < A/2 is possible only if

one segment has at least length 6. This is an extension of the known fact, based on

the arithmetic-geometric mean inequality, that S > A/2 if no segment is longer than

3.

A 1-segment has only one ratio u, and Sx = u; a 2-segment has 52 = 2w.

In the case of a 3-segment • • ■ xx 0 x2 x3 x40 x5 • • •, the sum is

c_    *2       *3 . *4   .h , y%-y% . y}
i33  — T "I" — ■+• ■+- ,

x3 + x4     xA     x5     y2 y3 yA

and, at the stationary point,

-ViA- = 72A3 = 73 A4 = «•

Since x3 > 0, we obtain the result that u > 1, which will be useful below.

The contribution of a A-segment to the cyclic sum is

S4 = x2/(xi + *4) + *3/(*4 + x5) + x4/x5 + xs/x6

= yi/y2 + (72 + y a) A3 - l + 73 A4 - ! + jv'jv

For the stationary value we obtain

y 1A2 = Vvs.     -72A3 - 74A3 + y 3/y a = 0,

74A3 - jv>4 + 74A5 = 0,



ON SHAPIROS CYCLIC INEQUALITY FOR N - 13 203

and, hence, with the notation introduced above,

(4.1) -a + r, - \/r3 = 0,

or

(4.2) r3 = (u+ vV + 4)/2> 1.

The sum S4 then becomes

S4 = 3u - 2 4- r3 4- l/r3 = 3« 4- ju2 + 4 - 2.

After these preparations we now consider the cases where noy is larger than 4, with

kj the number ofy-segments, i.e., {kx, k2, k3, kA). This corresponds to a total length

of

N = 2kx + 3k2 4- Ak3 4- 5k4,

and the sum is

S = ku + kA(h2 + 4 -2)-k3,

where k = kx + 2k2 + 3k3 + 3kA.

The product of all ratios rk in the sum must equal unity, i.e.,

uk.k4 = i

It follows from (4.1) that

(4.3) u2a + ua+x = 1

with a = k/k4 > 3. Clearly, then, « < 1 and, furthermore,

S > ku — k3.

In order to compare S with A/2 we evaluate

S - A/2 k3     ,      k2     k3     k4 ,1

It can be shown in the following way that u > 1 - l/2a. Since

(1 - x/a)a < exp(-x)    and   e~x + e'x/2 <1,

we conclude that

(1 - l/2a)2a +(1 - l/2a)a+1 < (1 - l/2a)2a +(1 - l/2a)a < 1.

The comparison with (4.3) shows that u > 1 - l/2a and, therefore, S > A/2.

The cases which include 5-segments as longest segments can also never lead to

S < A/2. At the stationary value we have

« = yi/yi = yi/y* - Vä.     -V73 - V>'3 + V^3 + V* = °-

V73 - 73 A4 - 75 A4 + V75 = 0.

From the last equation, rewritten as

U - r3 - l/r4 4- l/r3 = (r4 - r3)(l + \/r3rA) = 0,

we obtain r3 = r4, and, hence,

-u + r3- \/r3 + l/r32 = 0   or   u - 1 = (1 - l/r3)2(l 4- r3).

If any 5-segment is present, we always have u > 1.
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Furthermore, all xk must be nonnegative; hence,

x5 =y* -y**      r3 = rA>l.

In the case described by {kx, k2, k3, k4, k5} the product of all r's is

ukr3%r3l = 1,

where k = kx + 2k2 + 3(k3 + k4 + k5). (Here, the second subscript of r¡ ¡ refers to

they'-segment.) If k5 =h 0, then r35 > 1, and for the 4-segment r34 > 1. This leaves

only the possibility u = 1, r35 = 1—hence, a contradiction if k4 # 0, and if k4 = 0,

then S = A/2.

The conclusion is therefore that any case with S < A/2 must contain a segment

of at least length 6. Even with a 6-segment present, some combinations can be

readily eliminated, as we will show below.

5. General Properties of Segments of Lengths 6 and 7. For segments of length 6,

the unique relative minimum value, if it exists, can be found by a one-dimensional

search. In order for the sum 56 to be a minimum, we must have

u = rx = r2 = r6,       -u - l/r3 + l/r3r4 - l/r2r4 + r3 = 0,

\/r3 - r3 - l/r4 + l/r3r4 + r4 = 0,

where r3 = r5 has been used and the redundant equation omitted. The last equation

shows that r4 < r3; from x6 = y5 - y6 > 0 and xs = y4 - y5 + y6 > 0, it follows that

r3 > 1 and r4 - 1 + l/r3 > 0.

Linear combinations of the two equations above lead to

(5.1) -u + 2/r3r4 - l/r2r4 - l/r4 + r4 = 0,

(5.2) -ur3 - 1 + l/r3 - r3 + r32 + r4 = 0,

and we conclude that

ur3 > r4> u.

In the case {kx, k2, k3, k4, ks, k6} the product of all the ratios is

p = ukrt\r2^r2^r4k!>= 1,

with k = kx 4- 2k2 4- 3(â:3 + k4 + k5 + k6).

Since the product of r34, r35, r36 is larger than unity and r46 > u, it follows that

p > 1, if k3 + k5> 0. Therefore, no 3-segment or 5-segment can be present if the

longest segments are of length 6. In other words, the possibilities are restricted to

{kx,k2,0,k4,0,k6}.

The resolution of a 6-segment leads to a one-dimensional search. One possibility is

to carry it out by setting r3 = p 4- e, r4 = p - e, which leads to

p2 = e2 + l/2e - 1,       0 < e < 1/2.

From a given e we compute p, r3, r4, then u, and finally S6. The sum S6 is

S6 = 2(u + r3 + l/r3 + r4-2).

Therefore, from a simple table, for every u (with increasing e, u decreases from 4- oo

to 0) the 6-segment sum S6 is determined, and also the product p6 = u3r26r46 (see

Table 1).
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Table 1

Short table for the case (1,1,1,6)

f

0.05
0.10

0.15
0.20

0.2106
0.210625

0.2107

0.30
0.40

0.50

3.0504

2.1025

1.6849

1.4410

1.4016

1.4015
1.4013

1.1699

1.0403

1.0000

2.9504

1.9025

1.3849
1.0410

0.9804

0.9803
0.9799

0.5699

0.2403
0.0000

2.7973

1.7580
1.2656

0.9510

0.8967
0.8965

0.8962

0.5329
0.2341

0.0000

1.00109

1.00000

0.99669

6.674355

6.673376

6.670410

Similarly, the possibilities for segments of length 7 are also restricted. The sum S7

is stationary if

(5.3) -u - \/r3 + \/r3r4 - l/r3r2 + l/r2r2 + r3 = 0,

, - l/r4 + 1A42 - l/r3r¡ + r4(5.4) 1A3 0,

where u = r7, r3 = r6, r4 = r5 have been used. A linear combination leads again to

Eq. (5.2) and, hence, to

(5.5) ur3 > r4.

The general case {kx, k2,...,k7) has, as product of all terms,

./=i

If a 3- or 5-segment is present, then u > 1, and, hence,

px = u > 1,   p2 = u2 > 1,   p3 = u3 > 1,   p4 = u3r34 > 1,

Ps = "W.s > !.   Pb - ^rle^fi > L   Pi = u*rhrh > 1-

We therefore conclude that no 3- or 5-segment can be present if the longest segment

is of length 7.

6. Segments of Length 6 or 7 if A = 13. For A = 13, the above results leave the

case (1,1,1,6), with p = u3p6 and S = 3u + S6, as the only possibility with a

6-segment.

The numerical evaluation in Table 1 shows that p decreases monotonically with e,

and for p = 1 we obtain

5 = 6.67337 > 13/2.

The case (2,2,6) can easily be shown to lead to a cyclic sum S which is never

smaller than the cyclic sum for (1,1,8), and this case is considered below.

As segments of length 7, only the case (4,7) need be considered, with p =

«6r34r327r427 = 1. However, we now show that

P = '3,4("'3.7)2("2'4,7)2 > rl^u2^-,)   = (ur41)4 > 1.
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From (4.2) we have r3A > 1, and from (5.5), ur31 > r41. Furthermore, (5.3) can be

written as

ur4- 1 = (r3 - l)(r3r4 - l/r3r4 + r4 - l)/r3

and, since r3> r4> 1, ur41 - 1 > 0. We conclude that, for A = 13, the inequality

S > A/2 can possibly be violated only if one segment has at least length 8.

7. The Remaining Cases for A = 13. There are now only the cases (1,1,8), (3,8),

(1,10), and (12) to be discussed. As Nowosad [11, p. 447] has shown, the case with

all xk ¥= 0 need not be considered.

The case (3,8) can be taken care of by a general result valid for any 8-segment.

There are three equations for the stationary value of S:

(7.1) -U-- + --— + -i--±— + r3 = 0,
r3      r3r4     r3r4rs      r3r4r5      r3r42r5

(7.2) 7-'-3-7 + ;V-4- + -V + ''4 = o,
r3 r4      rArs      r4r5      r3r4r5

,-^ 11 111(7.3)-+-r4-4--+ r, = 0,
r3r4      r4 r5      r4r5      r3r4r5

and the inequalities from the condition xk > 0 are

r, - 1 > 0,   r4 - 1 + — > 0,    rs - 1 4--> 0.
r3 r4     r3r4

Equation (7.2), written in the form

rs(rA - r3)il + y-   = —2(-r3r4 + r3 - 1) < 0,
\        r3r4 /      r3r4

furnishes the inequality r4 < r3. Incidentally, it can be shown that this inequality is

true for segments of any length.

Furthermore, the sum of Eqs. (7.1) and (7.2) leads to

-1'-     l + I-J->>0
r4     r3r4

A final useful relation, r5 > u, follows from the sum of all three equations above:

2 2 12 11
+ - , .    + - - + r5 = 0,

r3r4r5      r3r4rs      r3rfr5      Vs      rfr5      rs

which is the same as

(rs - u)r2r42r5 = (r3r4 - r3 + l)2 > 0.

Considering the case (3,8), we must have

P=P3Ps = u3u3r2r2r5 = 1,

and in a 3-segment u > 1, which leads to a contradiction if the inequalities above are

taken into account.
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'Î

Table 2

Case (1,1,%) Case (1,10) Case (12)

0.865229 0.840551 0.822033
1.300825 1.227239 1.164199

0.965448 0.937842 0.906890

1.307523 1.247627 1.723051

\2              0.354429 0.203704 0.101057

S              6.625060 6.601225 6.591599

The remaining cases (1,1,8), (1,10), and (12) have admissible stationary points,

say y0. These points are readily found numerically. At the stationary points, the

Hessian and its eigenvalues are computed. It turns out that in all three cases we have

indeed found the (unique) relative minimum. The numerical values are listed in

Table 2.

There always exists an eigenvalue Xx = 0 with eigenvector y0, because the function

S(y) is homogeneous of zero degree in yk. All other eigenvalues at a relative

minimum are positive, and X2, the smallest of them, is listed.

This completes the consideration of all possible cases and proves that, for A = 13,

S(x) > A/2 holds.
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