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The Maximal Modulus of an Algebraic Integer

By David W. Boyd*

Abstract. The maximal modulus of an algebraic integer is the absolute value of its largest

conjugate. We compute the minimum of the maximal modulus of all algebraic integers of

degree d which are not roots of unity, for d at most 12. The computations suggest that the

minimum is never attained for a reciprocal algebraic integer. The truth of this conjecture

would show that the conjecture of Schinzel and Zassenhaus follows from a theorem of Smyth.

We further test our conjecture by computing the minimum of the maximal modulus of all

reciprocal algebraic integers of degree d which are not roots of unity, for d at most 16. Our

computations strongly suggest that the best constant in the conjecture of Schinzel and

Zassenhaus is 1.5 log Ba, where 6U is the smallest P.V. number. They also shed some light on a

recent conjecture of Lind concerning the Perron numbers.

1. Introduction. Let a be an algebraic integer of degree d, with conjugates

ax,...,ad. As usual, let fô| = max|a,| denote the maximal modulus of a. Clearly,

[a] > 1, and a theorem of Kronecker [4] tells us that |5] = 1 if and only if a is a root

of unity. Schinzel and Zassenhaus [9] have made the following conjecture:

Conjecture (SZ). There is a constant cx > 0 such that if a is not a root of unity,

then [ä| > 1 + cx/d.

In this paper we describe the computation of the minimum of \a\ for a of degree d,

with d < 12. The results suggest a conjecture which, when combined with a result of

Smyth [10], implies (SZ). Our results also suggest that the best constant c\ in (SZ)

should be § log 60, where 60 = 1.3247... is the smallest Pisot number (the real zero

of*3 - x - 1).

The results also shed some light on a conjecture of Lind concerning the "Perron

numbers" introduced in [6] and [7],

2. Conjectures Implying (SZ). The best results to date concerning (SZ) have been

obtained as corollaries to results on a question of Lehmer. Let M(a) =

nf_i max(|a,|, 1) denote the Mahler measure of a. Lehmer [5] asked:

(L) Does there exist a constant c0 > 1 so that M(a) > c0 for all a not roots of

unity?

A positive answer to (L) would prove (SZ), for, if v is the number of a, satisfying

\a¡\ > 1, then clearly M(a) < \ct\". Thus,

H > M(a)Wv > M(af/d > c\/d > 1 + cx/d.
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Table 1

Extreme values of [o] for fixed degree d. The minimum m(d) is attained for a with

minimal polynomial Pd(x) having v roots outside the unit circle.

d              v                         m(d) Pj(x)

11                            2 .v - 2

2 2           21/2 = 1.4142135624 x2 - 2, .v2 + x + 2 or x2 + 2.x + 2

3 2          ey2 = 1.1509639253 xi + x - 1

4 2                      1.1837518186 x4 + x3 + 1 or x4 + x + 1

5 4                      1.1216451786 .v5 - x3 + x2 + x - 1

6 4          e,1/4 = 1.0728298678 P3(x2)

7 4                      1.0928455996 .v7 + x6 + x3 - jt - 1

n8            6                        1.0756204773 x* + x7 + x4 - x2 + 1

9 6          Oí/* = 1.0479821944 P3(x3)
10 8                      1.0590775130 />5(x2)

11 8                        1.0571248570 xu + x10 + x7 + x6 - x4 + x2 - 1

12 8           BY* = 1.0357750083 />3(.x4)

However, it is conceivable that (SZ) could be true, and yet the answer to (L) could

be negative.

Smyth [10] proved that if a is nonreciprocal (i.e., a"1 is not a conjugate of a for

any /), then M(a) > 60. Hence, [o] > 1 + (log 0o)/d for nonreciprocal a. Smyth also

pointed out that the a with minimal polynomial x3k + x2k - \ (so d = 3k), has

|a] = 9x/(2k) = el/(2ä\ so one cannot improve this beyond [ö] > 1 + |(log ô0)/î/.

On the other hand, it is known that, for reciprocal a, one can definitely have

1 < M(a) < 60. Indeed, Lehmer [5] provided an example a0 with d = 10 for which

M(a0) = 1.17628... < 00. It is widely felt that a0 may be the best constant in (L).

There are many other examples in [1]. For reciprocal a, Dobrowolski [3] has shown

that

•«■»'♦«W)3

from which a result slightly weaker than (SZ) follows.

It should be pointed out that the known reciprocal a with small measure (as listed

in [1], for example) do not have ¡cx\ particularly small, since v is too small. For

example, Lehmer's 10th degree a0 has v = 1 and, hence, [07] = M(a0) = 1.17628_

Even the naive guess a = V2 has \a\ = 1.07177..., while the minimum of [Ô] for

degree 10 is 1.05907..., which is considerably smaller (see Table 1).

Let m(d) denote the minimum of |a] over a of degree d which are not roots of

unity. It is easy to see that this is an attained minimum. Let an a attaining m(d) be

called extremal. Then our computations, as summarized in Tables 1 and 2 suggest

the following:

Conjecture (A). Extremal a are always nonreciprocal.

Conjecture (B). If d = 3k, then the extremal a has minimal polynomial x3k +

x2k - 1 (orx3A - x2k - 1).

Conjecture (C). The extremal a of degree d have v - \d as d -* oo.
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Table 2

Extreme values of |a| for reciprocal a of even degree d. The minimum mR(d) is

attained for an a with minimal polynomial Rd(x) having v roots outside the unit circle.

d v mR(d) Rd(x)

2 1 2.6180339887 1 -3 1

4 2n 1.5392223384 113 11

6 2 1.3216631562 122122 1

8 2 1.1692830298 100111001

10 2 1.1257148215 10110101101

12 2 1.1080548536 1110-1-1-1-1-10111

14 4 1.0939016857 100011010110001

16 4 1.0813339123 ««(x2)

Perhaps (C) seems far-fetched on the basis of Table 1. However, the evidence for

(B) is clear, and it does appear that v(d)is monotone. These would imply (C).

Note that (A) implies (SZ) with cx = log 0O, while (C) implies that the best

constant is cx = | log 60.

Since the computation for d = 12 was rather lengthy, it is not feasible to extend it

to d > 13. However, we were able to test (A) up to d = 16 by computing mR(d), the

minimum of foj over reciprocal a of degree d which are not roots of unity. Since

mR(2k) > m(k)l/2 ^ m(2k) for k < 8, we thus have verified (A) for d < 16.

3. Perron Numbers. Lind [6] has defined a Perron number to be a real algebraic

integer a = ax such that ax > |«,-| for / > 2.

By the Perron-Frobenius theorem, if A is a matrix with nonnegative integer entries

and such that Ak has positive entries for some k, then the dominant eigenvalue a of

A is a Perron number. Lind has proved the converse [6], [7]. (Note that the

dimension of A may have to be larger than deg(a), e.g., if a has negative trace.)

In private correspondence, Lind conjectured that the smallest Perron number of

degree d > 2 should have minimal polynomial xd - x - I. This turns out to be true

if d =2, 3, 4, 6, 7, 8, 10, 12, but false if d > 3 and d = 3 or 5 (mod 6). A slight

modification of the conjecture is true up to degree 12.

The reason for the modification is the following: It is known [8] that if (n, m) = 1,

then x" — xm — 1 is either irreducible or the product of x2 - x + 1 and an

irreducible polynomial. (One can now derive this in a few lines from Smyth's

theorem [10] and the fact that M(x" - xm - 1) < ]¡3 < 0O2.) For (n, m) = 1, x" -

x"' - 1 can have the factor x2 - x + 1 only if n = 1 or 5 (mod6) and m + n = 3

(mod 6). Let us now compare the size of a, the positive root of xJ — x — 1, with ß,

the positive root of xJ+2 - xm - 1. If d > 3 and m < 4, then

ad+2 _ am _  !   > aJ + 2 _ a4 _  l  = a2(a +  j) _ ff4 _  j

= -(a - l)(a3- a - 1)> 0,

since a3 - a — l<aJ-a-l=0. Thus ß < a.

On the other hand, if m > 5, then

ad + 2 _ am _ !  ^ aJ+2 _ aS _l= a2(a + j) _ a5 _ j

- -(a2- l)(a3- 1) <0;

so /? > a.
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Thus, if m < 4 and xJ+1 — xm — 1 is divisible by x2 — x + 1, then /S is of degree

d, and [ß\ = ß < [ö] = a. This occurs exactly when J = 5 (mod 6), and m = 2 or

d s 3 (mod 6), and m = 4.

This suggests the following modification of Lind's conjecture. It has been verified

for d < 12:

Conjecture (D). The smallest Perron number of degree d > 2 has minimal

polynomial

xd-x-\ if</*3,5(mod6),

(x^2-^4- l)/ix2 - x + 1)     ifd= 3(mod6),

ixJ+2 - x2 - \)/ix2 - x + 1)     if d= 5 (mod6).

(7V.5. x5 - x4 - 1 = (x2 - x + l)(x3 - x - 1).)

4. The Computations. The method is based on similar principles to those used in

[1], but is somewhat simpler. Given a bound B > 1, we wish to generate the set R of

polynomials of degree d all of whose zeros are at most B in modulus. From this

finite set we will eliminate the cyclotomic polynomials and the reducible polynomi-

als. If B has been chosen sufficiently large, the remaining set will be nonempty and

will contain the minimal polynomials of the extremal a for [a] and the smallest

Perron number of degree d. For d ^ 3, the choice B = (2 + \/d)x/d suffices, since

Bd — B — \ > 0 and Bd - 2 > 0. In practice we chose B to be a "round" number

approximately equal to this value.

Let P(x) = xd + axxd~l + • • • + ad have zeros ax,... ,ad, and let Sk = Ef=1af

for k = 1,2,.... If all |«,| < B, then, clearly,

(1) \Sk\*ZdBk,       A: = 1,2,....

In addition, we have [1, Lemma 1]

(2) -dBk/2+(2/d)Sk/2< Sk,       k = 2,4,....

By Newton's identities, the Sk and ak are related by

(3) Sk + axSk_x +  ■■■ + ak_xSx + kak = 0,       k > d,

(4) Sk + axSk_x +  ■■■ + adSk_d = 0,       k > d.

According to (3), (5,,... ,Sk) is uniquely determined from (ax,... ,ak) and vice versa

for k < d. If the a, are integers, then al,....,ak_ï determine Sk (mod k). Hence, the

number of P satisfying(1) for k < dis approximately

Nj=U  ^~i2eBd^2Y~i2eñY
A = l        k

if 5 ~ 2'/J.

If we apply (2) for k < d, then we reduce this by a factor of approximately

(2/3)d/1. To see this, note that, e.g., the number of pairs (Sx, S2) which satisfy (1)

and (2) is approximately

jdB Í2dB2-í^\x2\ dx = \i2dB)i2dB2).

The factor (2/3)""1 is not quite correct for «-tuples (Sx, S2, S4,...,Sm) with

m = 2"x.   For  triples (Sx, S2, S4),  the correct  factor,  for example,  should  be



THE MAXIMAL MODULUS OF AN ALGEBRAIC INTEGER 247

(2/3) - (24/35), since

f" dxj"B\ bdB*-[\)yA dy = \- fi2dB)i2dB2)i2dB%

However, the approximation is good enough for these purposes.

Thus, we are ultimately faced with investigating about (4e/ J3)d - (6.28)'' poly-

nomials, so it is apparent that only relatively small d will be feasible.

Of course, one can use some symmetry and insist that Sx > 0. For d = 12 and

B = 1.063, the size of the set is thus predicted to be about

^(|)V2 = 3.93X108.

The exact size of the set was in fact 451 682 220.

If we use no other information than (1) and (2) for k < d, then it is clear that all

polynomials which appear in this set must be investigated further. Thus the size of

this set does play a critical role in determining the running time of the algorithm.

However, it is clear that one should not simply solve all such P to determine whether

P is in R. The inequalities (1) foxk>d provide further tests which should provide

the same sort of information more inexpensively.

Let us denote by Rd the set of P satisfying Sx > 0 and (1) and (2) for k < d. For

n > d, let /?„ denote the set of P in Rd satisfying ad ¥= 0 and (1) for k < n. Clearly,

the Rn are nested, and their intersection is R, since

lim sup (log \Sk\/k ) = log [ô|.

Thus for sufficiently large N, the set RN is not much larger than R, and we can

afford simply to solve all P inRN. The optimal choice of N depends on the rate of

decay \R„\ and on the time tx for applying the test (1) for a given k = n relative to

the time t2 for solving P. Clearly, tx « t2. Of course, since we naturally generate the

P 's one at a time without storing them, we do not know the values of \R„\ until after

the computation is complete. Thus, optimizing the choice of N is not feasible, but

N = 3d worked well in practice.

As a sample of the numbers involved, for d = 12, B = 1.063 we have

|Ä12| = 451,682,220, \R23\ = 37,019, |J?3S| = 4931,

\RU\ = 23,746,503, |äm| = 28,277, \RM\ = 4435.

|Ä14| = 4,987,914,

In fact, \R\ = 867, of which 811 are cyclotomic, 26 are reducible, and 30 are

irreducible.

The algorithm then is simply to generate each P in Rd and apply the sequence of

tests (1) sequentially for k = d + 1,... ,7V. The surviving P are in RN. We then test

for small cyclotomic factors (of order 7 or less) and then solve P using the

0A-algorithm. Using the ideas in [2], one can get a priori lower bounds on \a\ for

noncyclotomic P, so we can reject any P which have [a] < 1.0005 or [5| > B. The

remaining P are generally irreducible, but reducibility is easily checked, since we

apply the algorithm in order of increasing d, so we have a list of possible factors.
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To save time in generating Rd, the bounds in (1) and (2) are precomputed so that,

for example, the test (2) simply requires testing Sk ^ Cik/2, Sk/2), where C(i, j) is

a precomputed array. Thus, only integer arithmetic is required when applying (1)

and (2).

For reciprocal P of even degree, since ad_k = ak, P is determined completely by

Sx,... ,Sd/2. Writing m = d/2, we see that the initial set Rm contains approximately

1 j4m)mB™1'212\m'2

2 m\ \3)

polynomials. For d = 16 and B = 1.09, this is about 4.25 X 107. The actual number

generated was 46,345,943.

The same choice N = 3d was made and the same procedure followed in processing

the set RN. In this case, a number of reducible polynomials of the form QQ*

appeared, where Q*ix) = ±xd/2Q(x~x). These correspond to a of degree d/2 with

[a^I<|o|.
The running time was essentially proportional to the size of the initial set of

polynomials. For example, the case d = 12, B = 1.063 required 4.69 hours of CPU

time on an Amdahl 470 V7A.

5. The Tables. Tables 3 and 4 appear as an appendix in the supplements section of

this issue. If Px(x) = Qix5) and P2(x) = ±Q(-xs) for some s > 1, then we say Px

and P2 are equivalent. Since |a] is the same for Px and P2, only one of such a pair is

listed in the tables. Generally, it is the one in which the first nonvanishing a¡ is

positive, except when an a, attaining \a\ is real, in which case we choose the sign so

a, > 0.

All the tables exhibit a, = \oi\e'4', where 4> is given in degrees and chosen minimally

so that 0 ^ 0 < 180. The minimal polynomial of a is exhibited as a vector ax ■ ■ ■ ad

except in Table 1.

Table 1 gives a list of extrema for \~ct\ for degrees 1 < d < 12. Table 2 gives the

corresponding list for reciprocal polynomials of even degrees 2 < d < 16.

Table 3 gives a complete list of inequivalent a of degree d with fa] smaller than the

given bound B. Perron numbers are indicated by a "P" in the column preceding v.

Table 4 gives the corresponding lists for reciprocal polynomials. (Perron numbers

are not marked.)
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Table 3

All inequlvalent  a  of degree d with ral  less than the

given bound. The table gives the minimal polynomial as a

vector of integers, the number of conjugates outside the unit

circle,  loi  and  arg a  in degrees, «here a      is a conjugate

which attains  IcTI .  The "P" preceding certain m   denotes

that  a is a Perron number.

Degree Bound • 1.800

1 0-2
1 1 2
t 2 2
1-1-1
1 0-3
1 1 3
1 2 3
1 3 3

1.4142135624
1.4142135624
1.4142135624
1.6180339887
1.7320508076
1.7320508076
1.7320508076
1.7320508076

0.0
110.7048110546
135.0000000000

0.0
0.0

106.7786548810
125.2643896828
150.0000000000

Degree Bound - t.360

1 0-1
0 1 1
0 0-2
1-1-2
0-1-1
1 2 1

•1 1-2

1 1-1

1.1509639253
1.2106077944
1.2599210499
1.2880089603
1.3247179572
1.3247179572
1.3532099642
1.3562030656

139.6719231917
73.6316148171

0.0
148.8918227959

0.0
99.3438463835

0.0
124.6889973915
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