Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2024 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation
HTML articles powered by AMS MathViewer

by C. Johnson and J. Pitkäranta PDF
Math. Comp. 46 (1986), 1-26 Request permission

Abstract:

We prove ${L_p}$ stability and error estimates for the discontinuous Galerkin method when applied to a scalar linear hyperbolic equation on a convex polygonal plane domain. Using finite element analysis techniques, we obtain ${L_2}$ estimates that are valid on an arbitrary locally regular triangulation of the domain and for an arbitrary degree of polynomials. ${L_p}$ estimates for $p \ne 2$ are restricted to either a uniform or piecewise uniform triangulation and to polynomials of not higher than first degree. The latter estimates are proved by combining finite difference and finite element analysis techniques.
References
    J. Bergh & J. Löfström, Interpolation Spaces, Springer-Verlag, Berlin and New York, 1976.
  • J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal. 7 (1970), 112–124. MR 263214, DOI 10.1137/0707006
  • Philip Brenner and Vidar Thomée, Estimates near discontinuities for some difference schemes, Math. Scand. 28 (1971), 329–340 (1972). MR 305613, DOI 10.7146/math.scand.a-11028
  • Philip Brenner, Vidar Thomée, and Lars B. Wahlbin, Besov spaces and applications to difference methods for initial value problems, Lecture Notes in Mathematics, Vol. 434, Springer-Verlag, Berlin-New York, 1975. MR 0461121
  • G. W. Hedstrom, The rate of convergence of some difference schemes, SIAM J. Numer. Anal. 5 (1968), 363–406. MR 230489, DOI 10.1137/0705031
  • Claes Johnson, Uno Nävert, and Juhani Pitkäranta, Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 45 (1984), no. 1-3, 285–312. MR 759811, DOI 10.1016/0045-7825(84)90158-0
  • Claes Johnson and Juhani Pitkäranta, Convergence of a fully discrete scheme for two-dimensional neutron transport, SIAM J. Numer. Anal. 20 (1983), no. 5, 951–966. MR 714690, DOI 10.1137/0720065
  • C. Johnson & Mingyoung Huang, "An analysis of the discontinuous Galerkin method for Friedrichs systems." (To appear.)
  • P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974) Publication No. 33, Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 89–123. MR 0658142
  • U. Nävert, A Finite Element Method for Convection-Diffusion Problems, Thesis, Department of Computer Science, Chalmers University of Technology, 1982. W. H. Reed, T. R. Hill, F. W. Brinkley & K. D. Lathrop, TRIDENT, a Two-Dimensional, Multigroup, Triangular Mesh, Explicit Neutron Transport Code, LA-6735-MS, Los Alamos Scientific Laboratory, 1977.
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 65M60
  • Retrieve articles in all journals with MSC: 65M60
Additional Information
  • © Copyright 1986 American Mathematical Society
  • Journal: Math. Comp. 46 (1986), 1-26
  • MSC: Primary 65M60
  • DOI: https://doi.org/10.1090/S0025-5718-1986-0815828-4
  • MathSciNet review: 815828