## An analysis of a superconvergence result for a singularly perturbed boundary value problem

HTML articles powered by AMS MathViewer

- by Eugene O’Riordan and Martin Stynes PDF
- Math. Comp.
**46**(1986), 81-92 Request permission

## Abstract:

We give a new proof that the El-Mistikawy and Werle finite-difference scheme is uniformly second-order accurate for a nonselfadjoint singularly perturbed boundary value problem. To do this, we use exponential finite elements and a discretized Green’s function. The proof is direct, gives the nodal errors explicitly in integral form, and involves much less computation than in previous proofs of the result.## References

- Alan E. Berger, Jay M. Solomon, and Melvyn Ciment,
*An analysis of a uniformly accurate difference method for a singular perturbation problem*, Math. Comp.**37**(1981), no. 155, 79–94. MR**616361**, DOI 10.1090/S0025-5718-1981-0616361-0
T. M. EL-Mistikawy & M. J. Werle, "Numerical method for boundary layers with blowing—the exponential box scheme," - P. P. N. de Groen and P. W. Hemker,
*Error bounds for exponentially fitted Galerkin methods applied to stiff two-point boundary value problems*, Numerical analysis of singular perturbation problems (Proc. Conf., Math. Inst., Catholic Univ., Nijmegen, 1978) Academic Press, London-New York, 1979, pp. 217–249. MR**556520** - A. F. Hegarty, J. J. H. Miller, and E. O’Riordan,
*Uniform second order difference schemes for singular perturbation problems*, Boundary and interior layers—computational and asymptotic methods (Proc. Conf., Trinity College, Dublin, 1980) Boole, Dún Laoghaire, 1980, pp. 301–305. MR**589380**
P. W. Hemker, - A. M. Il′in,
*A difference scheme for a differential equation with a small parameter multiplying the highest derivative*, Mat. Zametki**6**(1969), 237–248 (Russian). MR**260195** - R. Bruce Kellogg and Alice Tsan,
*Analysis of some difference approximations for a singular perturbation problem without turning points*, Math. Comp.**32**(1978), no. 144, 1025–1039. MR**483484**, DOI 10.1090/S0025-5718-1978-0483484-9
E. O’Riordan, - Eugene O’Riordan,
*Singularly perturbed finite element methods*, Numer. Math.**44**(1984), no. 3, 425–434. MR**757497**, DOI 10.1007/BF01405573 - Donald R. Smith,
*The multivariable method in singular perturbation analysis*, SIAM Rev.**17**(1975), 221–273. MR**361331**, DOI 10.1137/1017032 - Martin Stynes and Eugene O’Riordan,
*A superconvergence result for a singularly perturbed boundary value problem*, BAIL III (Dublin, 1984) Boole Press Conf. Ser., vol. 6, Boole, Dún Laoghaire, 1984, pp. 309–313. MR**774624** - Martin Stynes and Eugene O’Riordan,
*A uniformly accurate finite element method for a singular perturbation problem in conservative form*, SIAM J. Numer. Anal.**23**(1986), no. 2, 369–375. MR**831623**, DOI 10.1137/0723024

*AIAA J.*, v. 16, 1978, pp. 749-751.

*A Numerical Study of Stiff Two-point Boundary Value Problems*, Mathematical Centre, Amsterdam, 1977.

*Finite Element Methods for Singularly Perturbed Problems*, Ph. D. thesis, School of Mathematics, Trinity College, Dublin, 1982.

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Math. Comp.
**46**(1986), 81-92 - MSC: Primary 65L10
- DOI: https://doi.org/10.1090/S0025-5718-1986-0815833-8
- MathSciNet review: 815833