Julia sets and Mandelbrot-like sets associated with higher order Schröder rational iteration functions: a computer assisted study

Author:
Edward R. Vrscay

Journal:
Math. Comp. **46** (1986), 151-169

MSC:
Primary 58F08; Secondary 30D05, 65E05

DOI:
https://doi.org/10.1090/S0025-5718-1986-0815837-5

MathSciNet review:
815837

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Schröder iteration functions ${S_m}(z)$, a generalization of Newton’s method (for which $m = 2$), are constructed so that the sequence ${z_{n + 1}} = {S_m}({z_n})$ converges locally to a root ${z^\ast }$ of $g(z) = 0$ as $O(|{z_n} - {z^\ast }{|^m})$. For $g(z)$ a polynomial, this involves the iteration of rational functions over the complex Riemann sphere, which is described by the classical theory of Julia and Fatou and subsequent developments. The Julia sets for the ${S_m}(z)$, as applied to the simple cases ${g_n}(z) = {z^n} - 1$, are examined for increasing *m* with the help of microcomputer plots. The possible types of behavior of ${z_n}$ iteration sequences are catalogued by examining the orbits of free critical points of the ${S_m}(z)$, as applied to a one-parameter family of cubic polynomials.

- Lars V. Ahlfors,
*Complex analysis*, 3rd ed., McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable; International Series in Pure and Applied Mathematics. MR**510197** - M. F. Barnsley and S. Demko,
*Iterated function systems and the global construction of fractals*, Proc. Roy. Soc. London Ser. A**399**(1985), no. 1817, 243–275. MR**799111** - M. F. Barnsley, J. S. Geronimo, and A. N. Harrington,
*Condensed Julia sets, with an application to a fractal lattice model Hamiltonian*, Trans. Amer. Math. Soc.**288**(1985), no. 2, 537–561. MR**776392**, DOI https://doi.org/10.1090/S0002-9947-1985-0776392-7 - M. F. Barnsley, T. D. Morley, and E. R. Vrscay,
*Iterated networks and the spectra of renormalizable electromechanical systems*, J. Statist. Phys.**40**(1985), no. 1-2, 39–67. MR**804161**, DOI https://doi.org/10.1007/BF01010526 - Paul Blanchard,
*Complex analytic dynamics on the Riemann sphere*, Bull. Amer. Math. Soc. (N.S.)**11**(1984), no. 1, 85–141. MR**741725**, DOI https://doi.org/10.1090/S0273-0979-1984-15240-6 - Hans Brolin,
*Invariant sets under iteration of rational functions*, Ark. Mat.**6**(1965), 103–144 (1965). MR**194595**, DOI https://doi.org/10.1007/BF02591353 - Robert B. Burckel,
*An introduction to classical complex analysis. Vol. 1*, Pure and Applied Mathematics, vol. 82, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. MR**555733** - James H. Curry, Lucy Garnett, and Dennis Sullivan,
*On the iteration of a rational function: computer experiments with Newton’s method*, Comm. Math. Phys.**91**(1983), no. 2, 267–277. MR**723551** - Eytan Domany, Shlomo Alexander, David Bensimon, and Leo P. Kadanoff,
*Solutions to the Schrödinger equation on some fractal lattices*, Phys. Rev. B (3)**28**(1983), no. 6, 3110–3123. MR**717348**, DOI https://doi.org/10.1103/physrevb.28.3110 - Adrien Douady and John Hamal Hubbard,
*Itération des polynômes quadratiques complexes*, C. R. Acad. Sci. Paris Sér. I Math.**294**(1982), no. 3, 123–126 (French, with English summary). MR**651802** - Adrien Douady and John Hamal Hubbard,
*On the dynamics of polynomial-like mappings*, Ann. Sci. École Norm. Sup. (4)**18**(1985), no. 2, 287–343. MR**816367**
J. P. Eckmann, "Savez-vous résoudre ${z^3} - 1$?" - Mitchell J. Feigenbaum,
*Quantitative universality for a class of nonlinear transformations*, J. Statist. Phys.**19**(1978), no. 1, 25–52. MR**501179**, DOI https://doi.org/10.1007/BF01020332 - John Guckenheimer,
*Endomorphisms of the Riemann sphere*, Global Analysis (Proc. Sympos. Pure Math. Vol, XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 95–123. MR**0274740** - Peter Henrici,
*Applied and computational complex analysis*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Volume 1: Power series—integration—conformal mapping—location of zeros; Pure and Applied Mathematics. MR**0372162** - James Lucien Howland and Rémi Vaillancourt,
*Attractive cycles in the iteration of meromorphic functions*, Numer. Math.**46**(1985), no. 3, 323–337. MR**791694**, DOI https://doi.org/10.1007/BF01389489 - A. S. Householder,
*Schröder and Trudi: a historical excursion*, SIAM Rev.**16**(1974), 344–348. MR**359308**, DOI https://doi.org/10.1137/1016055
G. Julia, "Mémoire sur l’itération des fonctions rationelles," - R. Mañé, P. Sad, and D. Sullivan,
*On the dynamics of rational maps*, Ann. Sci. École Norm. Sup. (4)**16**(1983), no. 2, 193–217. MR**732343** - P. J. Myrberg,
*Iteration der reellen Polynome zweiten Grades*, Ann. Acad. Sci. Fenn. Ser. A. I, no.**256**(1958), 10 (German). MR**0099437** - H.-O. Peitgen, D. Saupe, and F. von Haeseler,
*Cayley’s problem and Julia sets*, Math. Intelligencer**6**(1984), no. 2, 11–20. MR**738904**, DOI https://doi.org/10.1007/BF03024150 - E. Schröder,
*Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen*, Math. Ann.**2**(1870), no. 2, 317–365 (German). MR**1509664**, DOI https://doi.org/10.1007/BF01444024 - W. F. Smyth,
*The construction of rational iterating functions*, Math. Comp.**32**(1978), no. 143, 811–827. MR**486465**, DOI https://doi.org/10.1090/S0025-5718-1978-0486465-4 - Dennis Sullivan,
*Itération des fonctions analytiques complexes*, C. R. Acad. Sci. Paris Sér. I Math.**294**(1982), no. 9, 301–303 (French, with English summary). MR**658395**
W. P. Thurston, "On the dynamics of iterated rational maps." (Preprint.)

*La Recherche*, v. 14, 1983, pp. 260-262. P. Fatou, "Sur les équations fonctionelles,"

*Bull. Soc. Math. France.*, v. 47, 1919, pp. 161-271; v. 48, 1920, pp. 33-94, 208-314.

*J. Math. Pures Appl.*, v. 4, 1918, pp. 47-245. B. Mandelbrot, "Fractal aspects of $z \to \lambda z(1 - z)$ for complex $\lambda$ and

*z*,"

*Ann. New York Acad. Sci.*, v. 357, 1980, pp. 249-259.

*The Fractal Geometry of Nature*, Freeman, New York, 1983.

Retrieve articles in *Mathematics of Computation*
with MSC:
58F08,
30D05,
65E05

Retrieve articles in all journals with MSC: 58F08, 30D05, 65E05

Additional Information

Article copyright:
© Copyright 1986
American Mathematical Society