Computing volumes of polyhedra
HTML articles powered by AMS MathViewer
- by Eugene L. Allgower and Phillip H. Schmidt PDF
- Math. Comp. 46 (1986), 171-174 Request permission
Abstract:
In this note we give two simple methods for calculating the volume of any closed bounded polyhedron in ${{\mathbf {R}}^n}$ having an orientable boundary which is triangulated into a set of $(n - 1)$-dimensional simplices. The formulas given require only coordinates of the vertices of the polyhedron.References
- Eugene L. Allgower and Phillip H. Schmidt, An algorithm for piecewise-linear approximation of an implicitly defined manifold, SIAM J. Numer. Anal. 22 (1985), no. 2, 322–346. MR 781323, DOI 10.1137/0722020
- H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). MR 0102775
- Branko Grünbaum, Convex polytopes, Pure and Applied Mathematics, Vol. 16, Interscience Publishers John Wiley & Sons, Inc., New York, 1967. With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard. MR 0226496 R. Fletcher & S. P. J. Matthews, A Stable Algorithm for Updating Triangular Factors Under a Rank One Change, Report NA/69, Department of Mathematical Sciences, University of Dundee, Dundee, Scotland, November, 1983.
- B. von Hohenbalken, Least distance methods for the scheme of polytopes, Math. Programming 15 (1978), no. 1, 1–11. MR 501955, DOI 10.1007/BF01608995
- B. von Hohenbalken, Finding simplicial subdivisions of polytopes, Math. Programming 21 (1981), no. 2, 233–234. MR 623842, DOI 10.1007/BF01584244
- Hassler Whitney, Geometric integration theory, Princeton University Press, Princeton, N. J., 1957. MR 0087148
Additional Information
- © Copyright 1986 American Mathematical Society
- Journal: Math. Comp. 46 (1986), 171-174
- MSC: Primary 51M25; Secondary 26B15, 65D32
- DOI: https://doi.org/10.1090/S0025-5718-1986-0815838-7
- MathSciNet review: 815838