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Numerical Solution of Large

Sets of Algebraic Nonlinear Equations

By Ph. L. Toint

Abstract. This paper describes the application of the partitioned updating quasi-Newton

methods for the solution of high-dimensional systems of algebraic nonlinear equations. This

concept was introduced and successfully tested in nonlinear optimization of partially separa-

ble functions (see [6]). Here its application to the case of nonlinear equations is explored.

Nonlinear systems of this nature arise in many large-scale applications, including finite

elements and econometry. It is shown that the method presents some advantages in efficiency

over competing algorithms, and that use of the partially separable structure of the system can

lead to significant improvements also in the more classical discrete Newton method.

1. Introduction. In recent years, many researchers have investigated the solution to

nonlinear problems involving an increasingly large number of variables. The finite

element method has been very instrumental in this interest, since nonlinear partial

differential equations give rise, by this method, to sets of nonlinear algebraic

equations whose number of variables is proportional to the number of points

considered in the discretization of the problem (see [13] for example). In this field, it

is not uncommon that the Jacobian matrix of the system is unavailable or costly to

compute, and one may be tempted to use quasi-Newton approximations for this

important matrix. This type of procedure has indeed proven to be useful in small

dense problems [2], and had been extended [10] to take into account the sparsity

inherent in many of the large problems.

In the related field of unconstrained optimization, similar efforts were made to

obtain methods that could handle efficiently a large number of nonlinear variables.

Sparse quasi-Newton algorithms were proposed [12], [7], [11], and, more recently, a

new class of methods, applicable to so-called "partially separable" functions has

shown a lot of promise for the efficient solution of minimization problems involving

several thousands of nonlinear variables (see [3], [4], [5] and [6]). These partially

separable functions are functions that can be written as

m

(i) /(*)=£/,(*),

í-i

where x is the vector of variables belonging to R", and where each "element

function" fi(x) involves only a few components of this vector, or has a low-rank

Hessian matrix for other reasons. Problems of this nature arise in discretized

variational calculations, free-knots splines, nonlinear least squares, nonlinear net-
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works, shape transformation and many other fields. The procedure proposed in [3],

and subsequently analyzed and tested in the other papers referenced above, takes

advantage of this low-rank property by using low-rank quasi-Newton approxima-

tions to the Hessian matrices of the various /,(x), giving up the idea of approximat-

ing the Hessian of fix) as a whole; hence the name "partitioned updating

methods". Classical updating formulae, such as BFGS or rank one (RK1), were used

for these low-rank approximations.

The numerical efficiency of this type of algorithm in unconstrained optimization

leads naturally to the question as to whether the same kind of approach would be

successful in the nonlinear equation setting. It is the purpose of this paper to throw

some light on this issue.

In Section 2, we analyze more formally the partially separable structure that is

present in many large-scale applications, as well as the various approximating

schemes for the Jacobian matrix that result from this analysis. We also describe our

algorithm and discuss a special memory management method and its implication on

some parts of the calculation. In Section 3, we describe the test problems that have

been used for the numerical experiments and present their results. We also state

some conclusions and perspectives concerning the numerical solution of partially

separable nonlinear problems in many variables.

2. Algorithmic Framework.

2.1. Partially Separable Systems of Nonlinear Equations. In the following, we will

be concerned with the solution of the equation

(2) fix) = 0,

where x is a vector of unknowns belonging to the «-dimensional real vector space,

and where fix) is a vector of the same space that can be computed, at a cost, for

any given value of x. We will be interested in the case where f(x) is a nonlinear

function of x that is at least once continuously differentiable.

To solve our problem, we will, at a given point x, consider the local linear model

(3) f(x + s)=f(x)+Js,

for sufficiently small displacement s, where J is a suitable approximation to J(x),

the Jacobian matrix of f(x). We can then solve the corresponding linear system, and

iterate on this process, which yields an iterative scheme of the type

(4) xk+x = xk-[Jk]-1f(xk)       (k = 0,1,2,...),

where x° and J° are given. Clearly, and as is common in this field, we will, in

practice, use a variant of (4) that allows for some damping along the direction dk

defined by the (approximate) solution to

(5) Jkdk = -f(xk).

The interested reader is referred to [2] for more details.

We will say that the function f(x) is partially separable if and only if two

conditions are satisfied:

1. f(x) is described as a sum of "element functions", i.e,
m

(6) /(*)-£/,(*),
( = 1
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2. each one of the m element functions f¡(x) has a low-dimensional range and/or

domain in R".

The term " low-dimensional" means that, in practice, this notion will be of interest

when the maximal dimension of these ranges/domains will be much smaller than «,

the total number of variables, although the formal definition does not prevent this

quantity to be as great as « - 1.

It is important to realize that this notion covers most of the problems involving

many variables. A typical case is when each f¡(x) only involves a few of the «

variables and has an image with only a few of its components being nonzero. This

particular structure naturally results in a sparse Jacobian matrix for f(x), but it is

interesting to observe that this sparsity is only a consequence of the partially

separable structure, and not the other way round. Partial separability is, in essence, a

geometric description of the underlying structure of the considered problem, and is

invariant with respect to the particular basis chosen, in contrast to sparsity.

One of the important cases where partial separability arises is in the finite element

method, where f(x) is decomposed into a sum of functions related to each element

of the discretization (see [13]), hence the name "element functions". In this setting,

the domain of each of these functions is contained in the subspace spanned by the

canonical basis vectors corresponding to the variables occurring in a single element

(the "elemental" variables), and its range is also contained in a low-dimensional

subspace. We have used the expression "is contained in" on purpose, since, in a fair

number of practical instances, these element functions are also invariant with respect

to certain translations of their elemental variables, and this reduces even further the

dimensionality of their domain. For example, in stress analysis, the value of the

internal stress in a particular element is invariant for any translation of the complete

element in the three-dimensional space.

Other large partially separable nonlinear problems arise in boundary value

computations, and other discretized nonlinear functional equations.

2.2. Partitioned Updating. It is now interesting to see that some of the classical

methods for computing a (quasi-)Newton approximation J to J(x) can be deduced

from particular choices of element functions in the decomposition (6).

1. If one chooses, for any choice of f¡(x), to compute their Jacobians J¡(x)

analytically or by finite difference, it is easy to see that, because

m

(7) /(*)-!/,(*)
1 = 1

for all x, the overall matrix will be the analytical Jacobian of fix), or a finite

difference estimation of it. A typical iterative method to solve (2) is then identified

with (the discrete) Newton's algorithm.

2. One may also choose to describe fix) as the sum of canonical basis vectors

multiplied by the corresponding component of f(x), namely

(8) /(*)-¿ef/(*)-e„
i = i

where e, denotes the ¡th vector of the canonical basis. For these element functions,

we observe immediately that the range of each one of them is of dimension 1 (it is
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span[e,]), and hence the definition of partial separability applies. It is well-known

(see [2], for example), that a least-change secant update for this decomposition, i.e., a

row-by-row partitioning of the Jacobian, yields the classical Broyden formula

(9) J+=J+iy -Js)sT/sTs,

where we have used the notation + to denote a quantity related to the next iteration

of the algorithmic process (4), and where

(10) s = x + -x

and

(11) y=f(x + )-fix).

3. Specializing the previous choice, when the number of variables « is large, we

assume that each element function in (8) depends only on a few variables, those that

actually appear in the /th nonlinear equation. This modification now restricts the

domain of each element function, in addition to the previous case, which only

restricts its range. Classically again, the least-change secant update corresponding to

this choice is Schubert's update [10].

A unified local convergence theory based on this observation has been published

in [4], and g-superlinear convergence to an isolated solution x* is shown for these

quasi-Newton methods under standard assumptions.

Why write more about partially separable nonlinear systems, since well-known

methods seem to exploit this structure already? Firstly, we must emphasize the

geometrical viewpoint that is missing in the more traditional approaches to large

problems based on sparsity. One can also see that, for some examples, the row-by-row

partitioning of the Jacobian matrix may be rather unnatural. In finite elements

again, the Jacobian is described as the sum of the Jacobians of the element

functions, which are usually small square matrices of dimension larger than one, and

this partitioning, although fitting in our partially separable context, is totally ignored

by Broyden's or Schubert's methods. We may therefore prefer to preserve this

structural information, and use a quasi-Newton approximation to the Jacobian of

each element function, as given in (6). This amounts to setting up a partially

separable local linear model of the form

in

(12) f(x + s)= E {/,(*)+•/,*}
í=i

instead of (3), and modifying the equation (5) to read

(13) zZlk
1 = 1

«**=-£//(*)•

/=i

This approach has been called "partitioned updating" in [3], where quasi-Newton

formulae were used in the optimization context; we will retain this terminology here,

and use the Broyden update (9) for improving /*, our current approximation to

The resulting algorithm may then be broadly described as follows, if we assume

that x° and {J^f-i are given.
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1. Compute /,(x°) for i = 1,..., m, and hence fix0). Set k = 0.

2. Compute the search direction by solving (approximately) the linear system (13).

3. Compute xk + 1 and f(xk + l) by using a line search from xk along dk, i.e.,

compute a scalar f* such that

(14) xk+1 = xk + tk ■ dk

and the norm of f(xk + x) is sufficiently smaller than that of f(xk).

4. Test for termination.

5. Update the element Jacobian approximations by applying Broyden's formula

(9) to each one of them, with s and y being defined, for the /th element, by

(15) s = xk + l-xk

and

(16) fl=/,(**+1)-/,(*')•

6. Set k to k + I, and return to step 2.

We again refer the interested reader to [2] for further details concerning the line

search, termination criteria and other points not explicitly discussed above.

2.3. Storing Approximate Element Jacobians. We now investigate the consequences

of partial separability on the storage scheme that is used for the element Jacobian

approximations J¡.

One very common reason for the range and domain of an element function to be

of low dimension is that only a few of the components of their vectors are nonzero.

In other words, a given element function does not contribute to all « equations and

does not involve all « variables. In this frequent case, it is clear that the Jacobian J,

of this element will only contain a few nonzero rows and columns, and that the

superposition of those small (possibly) dense submatrices induces, in J, a well-

defined sparsity pattern. Instead of keeping track of the total sparsity pattern of /,

as is usually done, we will, in our framework, keep track, for each element, of the

respective variables (the elemental variables) and respective equations. This can be

done conveniently, and this kind of reduction in dimension can therefore be handled

by the data structure.

It may also happen that the domain and/or range of an element Jacobian is of

low dimension, but is spanned by vectors other than those of the canonical basis. In

this case, the information can no longer be represented by lists of components, but

some explicit reduction technique is needed. We propose to consider the representa-

tion

(17) Ji-U^W,       ii=l,...,m),

where the columns of U, span the range of /, and the rows of W¡ its domain, for all

values of the variables. (In this equation, we assume that J¡ is a dense matrix, i.e.,

that the possible reduction explained in the previous paragraph has already been

carried out. This assumption will also be made further below.) T¡ is, in fact, the part

of the Jacobian that we really wish to approximate. It is often the case that the

matrices U¡ and W¡ are identical for a large number of elements, except for the

assignment of the elemental variables; advantage can be taken of this structure to

store only the different ones, or to ask the user to provide routines for their

manipulations, as is done in [6], Then only T¡ is stored and estimated by the

numerical algorithm.
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This can be best illustrated by a small example. Consider the nonlinear system of

equations where the / th element function is given by

[//(*)L-1 = 3(-*2,-l - *2, + l)3 + 2*2/ - 5

(lgx +sin(jc2|._i - x2i - x2i+x)sin(x2i_x + x2i - x2i+x),

[//(*)k = -(^2.-1 - *2,+i)exp[*2,-i - x2i - x2l + 1] + 4x2, - 3,

U(*)L+i= -2[/,(^)]2,-i.

for /' = 1 up to m, and where the other components of f¡(x) are zero. Clearly, only

the components 2/ - 1, 2/ and 2/ + 1 of x and f(x) play a role in this element, so

its domain and range are restricted to the subspace spanned by e2l_1, e2i and e2j+x.

Furthermore, it can easily be seen that, in fact,

(19) range[/,(x)] = span[e2l, <?;,,_!, -2e2,+l]

while

(20) domain [/,(x)] = span^,,^,.! - e2i+x]

for all x. Hence, in this case the lists of elemental variables and equations will both

contain 2/— 1, 2/, 2/ + 1, and the matrices U¡ and W¡ will be given by the

expressions

(21) U,T =

and

(22) W, =

1    0     -2
0    1      0

1     0     -1
0    1      0

It is interesting to observe that, since structural information is stored twice for the

same entries of the overall Jacobian at positions where two or more element

Jacobians overlap, pointer storage needed for the proposed scheme is usually slightly

larger than in more classical approaches to sparsity. On the other hand, if the

matrices Ut and/or W¡ are not reduced to the identity and do not vary too much

with /', storage for real numbers can be less for the new technique than for the

traditional storage procedure.

We now wish to rewrite the equations from which we estimate J¡ in terms of the

matrix T¡. Consider the quasi-Newton or secant equation first. We obtain

(23) y, = J<s = UJWs,,

where both yi defined in (16) and s have been restricted to the subspaces spanned

by the elemental rows and variables of the /'th element (hence the subscript /' in s¡).

This yields, as a new secant equation,

(24) UWfiù-UX

where the superscript I denotes the generalized inverse (remember that yi is in the

column space of U¡\).

Similarly, assume that one wishes to estimate the fth column of T¡ by differences.

We want to use the relation

(25) T¡ej = some difference in /, ( • ).
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The estimation process can now be rewritten as:

1. compute

(26) hj = aWfe]

for some steplength a,

2. evaluate the quantity

(27) z, =¿(* + «,)-/,(*),

3. estimate the y th column of Ti by setting the difference in (25) equal to

(28) (Ufzj)/a.

Observe also here that Zj is always contained in the column space of U¡, so that the

computation of equations like (28) is quite simple.

3. Some Numerical Tests.

3.1. More Details About the Tested Algorithms. We now present some numerical

experiments that were performed with methods of the type just described. Before

presenting the test problems, however, it is helpful to give some more details about

the numerical procedures that were actually implemented.

Earlier on, we mentioned that the linear system (13) need not be solved to full

accuracy. In practice, we have used an iterative linear least squares method (LSQR,

by Paige and Saunders [9]) until the residual was reduced by a sufficient amount.

This is only one possible choice that has been made for simplicity, and there are

clearly a number of interesting alternatives, such as frontal methods (especially in

the finite element context), SOR or more general sparse solvers. However, it was not

our purpose to test efficiency of the linear algebra part of the nonlinear algorithm,

but, instead, to compare different ways of handling the nonlinearity itself. Hence,

these more efficient procedures for solving the linear system were not implemented.

At the starting point, and following [2] again, we choose to evaluate the initial

Jacobian (i.e., the Jacobians of the element functions at the starting point) by finite

differences. This strategy was also used when the step computed by solving (13) was

not a descent direction for the /2-norm of the residual, the merit function that was

used throughout the calculation.

The line search was implemented using safeguarded cubic/quadratic interpolation

in a very classical fashion, but care was taken not to reevaluate an element function

whose elemental variables were not modified since its last evaluation. This " special"

feature, together with the difference estimation of the Jacobians element-by-element,

account for the fractional number of function evaluations that appear in the

numerical results presented below.

Different approximation schemes for the Jacobian(s) are tested below. First, a

method is examined that uses finite differences to estimate the element Jacobians.

This amounts to a rather traditional discrete Newton algorithm. However, the

element-by-element estimation and the particular storage scheme we use for the

elements will allow some further refinements: since the dimension of T¡ can be

smaller than that of /,, fewer differences are needed to estimate it. The gains

resulting from this observation will be investigated by comparing an algorithm that

estimates J¡ by finite differences and one that only estimates T¡ by the same method.
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Amongst the partially separable quasi-Newton updates, we will restrict ourselves

to the application of Broyden's formula (9) to different partitionings: the classical

Broyden update for the row-by-row description of the nonlinear system, Schubert's

update when advantage is taken of the fact that not all variables occur in all

equations, and the general partitioned updating based on the natural decomposition

of the problem into elements.

It is worth mentioning, at this point, that the updating formula (9) is scale

invariant on the range of fix), but not on its domain, in contrast to quasi-Newton

updates for minimization, like the BFGS formula. Another formula, also due to

Broyden [1] and usually called the "bad" Broyden formula, provides scale invariance

on the domain, but not on the range. Testing various partitionings of the Jacobians

together with this update has been left for further work. Other combinations are still

possible, like using Schubert's formula together with nontrivial W¡ for each equation,

but the results available for this algorithm are not sufficiently complete to be

reported here.

We may also try to predict the behavior of the two algorithms which takes

information in U¡ and W¡ into account (discrete Newton and partitioned Broyden),

when Uj and/or W¡ are wrongly defined. A typical case may be when one of these

matrices is, in fact, different from the identity, but when this structure is ignored by

the user and the identity is used instead. We anticipate that the discrete Newton

method would be substantially better than partitioned Broyden, because it estimates

the true Jacobian, and therefore the structure of its domain and range as well, while

the quasi-Newton approximation using (9) relies on an external specification of the

domain. If this specification, i.e., W¡, is wrong or incomplete, one may expect the

quasi-Newton approximations to be of poor quality, and hence the resulting conver-

gence to be significantly impaired. Using the identity as U¡ when the range of J¡(x)

has a dimension lower than its number of elemental variables should be, according

to the previous paragraph, is of less importance.

Finally, the case where s¡ is zero for some element / has been dealt with by simply

skipping updating J¡, as no information on this element can be gained from such a

step.

3.2. The Test Problems. The nonlinear systems that were used for the numerical

tests are now described. We first used three classical problems from the Argonne test

set [8]: Broyden tridiagonal and banded systems, and the discretized boundary value

problem. We also used the gradient of the linear minimum surface problem

described in [3] and [6]. Finally, we included five new problems with variable

dimension, two of them being of the finite element type.

3.2.1. A trigonometric system. The element functions are defined by

5/

(29) [f(x)]5i^ = 5 - i[l-cos(x5i_J)]-sin(x5l_J)-    £     cos(xJ
k = 5i-4

for j = 0 to 4, the other components of f¡(x) being zero. The starting point is

defined by

(30) x, = 1/«        (/ = !,...,«).
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3.2.2. A trigonometric-exponential problem [trigexp 1]. The element functions are

defined by

/31x [//(*)], = 3xJ + 2*,+i - 5 + sin(*, - ^, + i)sin(x, + xi+1),

[fi(x)]i+i = -x,exp[x,. -xi+1] +4xi+l - 3,

the other components of f(x) being zero. The starting point is at the origin.

3.2.3. A variant of the preceding system [trigexp 2], The element function compo-

nents are described in (18) and the starting point is given by

(32) x, = l        (i = l,...,n).

3.2.4. Two finite element type problems. The last two problems are the bilinear

finite element discretization of the heat radiation equation on the unit square. The

basic equation is

(33) [kx(T¿, t;)t;\x + [^(r;, r;)r;]; + 0 = 0,

where the gradient of the temperature has the components Tx and T', and where

[ • ] 'x denotes the partial derivative of the quantity inside the bracket with respect to

the variable x. Dirichlet boundary conditions were chosen, inasmuch as the tempera-

ture T was constrained to be zero on the boundary. In the tests, Q was chosen to

represent point sources/sinks at the points

(0.9,0.1),    (0.1,0.3),    (0.5,0.5),    (0.1,0.9)    and   (0.9,0.9)

with respective values

-1.0,    -0.5,   1.83,    -0.6   and   0.27.

In the first problem (nlheatl), the conductivities were chosen according to the

relations

kx(Tx\ t;) = max(0,1 - 69.444445[Tx']2),

ky(Tx',T;) = max(0,1 - 69.444445[r/]2),

while in the second of these tests they were both set to

(35) kx(Tx\Ty') = kv(Tx',T;) = 0.01 + 100exp[-0.1||r||],

where ||r'|| is the Euclidean norm of the gradient of the temperature. The starting

point is at the origin for both problems.

It can easily be seen that the form of (34) implies that each element function has a

range and a domain of dimension two, even though there are four variables (the

temperature values at the four corners of a square element); this is not the case when

(35) is used.

3.2.5. Summary of the tests. We now summarize the characteristics of the tests that

were run. In the following, we indicate by the symbol # the problems where the

natural decomposition into elements is the decomposition into the equations of the

nonlinear system. Since we assume that all variables do not necessarily appear in all

equations, the partitioning corresponding to the partially separable approach is

identical to the partitioning corresponding to Schubert's update. We also mark the

problems with the symbol $ when the matrix U¡ and/or W¡ is not reduced to the

identity for at least one (usually most) element(s) of the decomposition.
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Nonlinear heat conduction 1 (, $)

Nonlinear heat conduction 2 (, )

Minimum surface (, $)

Broyden tridiagonal ( #, $)

Broyden banded (#,)

Trigonometric (, )

Trigexp 1 (, )

Trigexp 2 (,$)

Discretized boundary value ( #, $)

« =

n

100,

484.

100,

484,

25,

121,

324,

50,

1000.

50,
1000.

« = 51,

« = 100,

« = 51,

« = 50,

169,   225,   324,   400,

324,   400,169, 225,

576.

49, 64,

169, 196,

400, 484.

81,   100,

225,   289,

100,   250,   500,   750,

100,   250,   500,   750,

750,1000.

125.

120.

101, 251.

250, 500,

75, 101,

75, 100,

Using these 54 problems, 223 runs were made with the algorithms described

above. All calculations were done in double precision on a DEC2060 of the Facultés

Notre-Dame de la Paix in Namur (Belgium), using the Fortran 77 compiler without

optimization. This machine has a wordlength of 36 bits and uses 63 bits to hold the

mantissa of a double-precision number. All methods were stopped when the relative

max norm of the residual (see [2] for details) was below 10 ~7.

3.3. Results and Discussion.

3.3.1. Using the structure of the range and/or domain. We first examine the effect,

in the numerical computations, of using the structure of the range and/or domain of

the element Jacobians /,(•)> as described in (17). For this purpose, we selected, in

the test problems mentioned above, those where advantage could be taken of this

structure (flagged with $). We compare the two methods that can deal with this

situation (discrete Newton and partitioned Broyden). A summary of their perfor-

mance can be found in Table 1. In this table, we use the following abbreviations:

- nprob is the number of problems considered in this set,

- av.dim. is the average dimension of the considered problems,

- str is set to " yes" when the structure of the range and/or domain was correctly

incorporated in the calculations, and to "no" when it was ignored,

- fis is the number of times where the considered algorithm failed to satisfy the

stopping criterion,

- it/prob is the average number of iterations required by the considered method

- nfev/prob is the average number of function evaluations required by the

considered method.

The names of the methods are self-explanatory. The problems sets were chosen to

represent "small" problems (« at most 100), and "larger" ones (« above 100). Here
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Table 1

Performance of the methods when using the range/domain structure

nprob

13

av.dim. method str fis it/prob

5.80

5.80
14.23
30.54

nfev/prob

70.77 D. Newton

Part. Br.

yes

no

yes

no

21.68
28.88

21.53
42.77

18 320.77 D. Newton

Part. Br.

yes

no

yes

no

8.72
9.06

25.61

49.65

33.13

48.48
35.87

64.93

and below, the number of function evaluations is calculated as the total number of

element function evaluations divided by the total number of elements. Therefore, it

represents the number of times the complete right-hand side has been computed.

Inspection of these results clearly shows the advantage of taking the structure into

account, for both methods. One can also observe the behavior predicted above:

ignoring the structure causes a much worse degradation in performance (and, to

some extend, reliability) of the partitioned Broyden method than for the discrete

Newton algorithm. This remark is most apparent when one considers the iteration

numbers needed for solution. Hence, we can conclude that analyzing this type of

structure, and using it when available, can be of importance when solving sets of

nonlinear equations.

3.3.2. Comparing the methods tested. One of the major issues in running the

numerical experiments was to compare, if possible, the relative efficiency and

reliability of the different methods discussed in the beginning of this paper. The data

for such a comparison appear in Table 2. Conventions in this table (and the

following ones) are similar to those used in Table 1. Because of the conclusions of

the previous paragraph, the discrete Newton and partitioned Broyden methods were

used with correct information on the ranges and domains of the element Jacobians.

Although this constitutes only a rather limited set of experiments, and caution

must be exercised before extrapolating any conclusion to a more general framework,

one feels justified to make the following observations when analyzing this data.

Table 2

Comparison between the methods

nprob av.dim.

73.39

method str fis it/prob nfev/prob

18 D. Newton

Part. Br.

Schubert

Broyden

yes

yes

no

no

5.55
13.78
22.66

26.23

24.93

20.31

37.53

117.46

36 393.36 D. Newton

Part. Br.

Schubert

yes

yes

no

6.92
18.39
43.67

31.35
25.57
73.76
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Table 3

Results for the trigexp 1 test problem

D. Newton Part. Br. Schubert

100

250
500

1000

7/25.0
7/25.0
7/25.0
7/25.0

13/18.0

13/17.6

13/16.1

13/13.7

16/23.0

16/21.6

16/19.5

16/22.0

1. Schubert's method is never better than discrete Newton.

2. Schubert's method is not better, on average, than partitioned Broyden. Here

one must remember that these two methods may coincide when the natural partition-

ing of the nonlinear system is row by row. Therefore, a finer analysis is needed to

justify this remark, which will be given below using problems for which the two

methods are different.

3. Even for small problems, the full Broyden method is usually outperformed by

other techniques that can use more of the problem structure, if any.

4. Partitioned Broyden updating is clearly competitive compared to the discrete

Newton approach. The choice between these two algorithms may depend, in

practical problems, upon the relative costs of the linear algebra involved and that of

function evaluations. If this latter cost is high and the problem is partially separable,

some consideration should be given to the partitioned Broyden algorithm.

5. The above remarks are more relevant when the problem dimension increases.

We nevertheless feel that these tentative conclusions should be tempered by a

closer examination of some particular instances in our test set. Two of these

instances are therefore more detailed than in the above tables. We first present the

results obtained for the "trigexpl" problem (see Table 3).

In Table 3, the number appearing before the slash is the iteration number and that

appearing after the slash is the number of function evaluations needed to obtain the

solution to the desired accuracy. The classical Broyden method was also tested for

« = 100, and needed 53 iterations and 202 function evaluations to obtain the

solution. The constancy of the number of iterations for the three first methods, as

the dimension of the problem increases, is quite remarkable here. Partitioned

Broyden has the best performance in terms of function evaluations, as is the case on

average for the problems tested.

However, this is not the case for the minimum surface test problem, whose results

appear in Table 4. The pure Broyden update was also used for the problems of

dimension 25, 49, 64, 81 and 100, and needed 35, 30, 33, and 34 iterations

respectively, as well as 64, 90, 118, 162 and 178 function evaluations. In this

example, it is therefore advantageous to use the partially separable structure of the

problem, even for small dimensions.

We observe also the appreciable degradation due to ignoring the structure of the

range and domain of the element Jacobians, especially when using the partitioned

Broyden update.

3.3.3. Partitioned Broyden vs. Schubert when they are different. As mentioned

above, we end this comparison by a closer look at the respective performance of the

partitioned Broyden and Schubert approach, when the structure of the problem does
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Table 4

Results for the minimum surface test problem

D. Newton Part. Br. Schubert

25

49

64

81

100

121

169

1%

225

289

324

400

484

8/26.8
8/28.0

10/36.1

10/37.3

10/37.5

9/33.6

12/44.6

11/41.7

16/60.7

19/71.7

18/65.7
14/53.8

19/71.8

str

8/ 31.3

8/ 36.0

10/ 49.7

10/ 49.7

10/ 50.8
9/ 46.4

12/ 63.7

11/ 58.9

14/ 75.7

18/ 98.8
18/ 95.3

22/117.6

19/104.6

18/30.5
27/35.9

29/46.8
32/42.9
35/47.9

30/50.9

44/57.0

41/55.0
38/53.0
61/80.0
59/76.0
60/81.0
64/92.0

25/ 39.5
56/ 74.8

33/ 52.9
77/ 89.1

81/103.2

87/120.5
93/114.0

90/118.8

52/ 77.9

150/176.5

158/181.5
68/ 93.2
-fail-

20/ 35.5
35/ 68.8

31/ 53.1
56/ 82.0

25/ 63.3
52/ 84.1

135/219.8

75/114.2
71/128.0

102/197.0

164/299.7

179/339.0

397/619.5

not make them coincide. We therefore only consider the test problems where the

natural partitioning is not row-by-row, or, if it is, where the true domain of some of

the element Jacobians is smaller than their number of elemental variables. The

results of this comparison are presented in Table 5.

Two observations arise from the examination of Table 5 :

1. the performance of partitioned Broyden with the structure of ranges/domains

correctly taken into account is slightly better than in Table 2, where all problems

were considered, while that of Schubert's update is slightly worse;

2. on average, partitioned Broyden without taking the range/domain structure

into account is a little bit better than Schubert's method. We nevertheless feel that

this should be taken with some caution, since the detailed results show the matter to

be very much problem dependent.

We end this comparison by comparing the storage requirements of partitioned

Broyden and Schubert's methods. As has been said above, we expect Schubert's

method to use less real storage than partitioned Broyden, because this last approach

must store each element Jacobian completely, even for the components that overlap

others. Using the structure of the range and domain also affects the storage for the

latter method, because, when U¡ and/or W¡ are not reduced to the identity, the size

of T¡ is then smaller than that of J¡. These storage requirements are compared in

Table 6. The numbers appearing in this table are the average number of reals to be

stored for the complete algorithm, including workspace. However, the differences

Table 5

Schubert vs. Partitioned Broyden when different

nprob av.dim.

73.19

method str fis it/prob nfev/prob

16 Part. Br.

Schubert

yes

no

no

13.37

26.37

23.37

19.75

37.03

39.13

30 359.23 Part. Br.

Schubert

yes

no

no

19.60

33.10

49.93

27.27

44.02

84.73
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Table 6

Storage needs for Schubert and partitioned Broyden

nprob

16

30

av.dim.

73.19

359.23

Part. Br.

str

1060
5985

no str

1413
7381

Schubert

988
4936

reflect only the differences in the storage scheme of the approximate Jacobians,

because the remaining space is independent of the method considered. These

numbers do indeed confirm our expectations.

3.3.4. General comments and perspectives. Although the tests we reported upon can

certainly not be considered as final or conclusive, we think that some general

comments can be made concerning the solution of partially separable systems of

nonlinear equations.

Aside from the interest of the theoretical concept of partial separability and

partitioned updating techniques, it seems clear that the partitioned Broyden ap-

proach has to be considered seriously when dealing with such problems, especially if

one has good knowledge of the geometry of the ranges and domains of the element

Jacobians.

In this context, we also believe that our results show the importance of using the

properties of these subspaces when using a more traditional discrete Newton

approach.

In view of the above results, one also feels justified to question the efficiency of

Schubert's algorithm for the class of problems that we have considered, except

maybe when storage is extremely scarce.

Finally, we must reassert the need for further testing of the issues we raised in this

paper. We believe that tests made by a single person and on a single set of test

problems are not sufficient to draw firm conclusions as to the relative merits of

numerical algorithms. Open questions also include a proof of global convergence for

the structured quasi-Newton algorithms that we have described.
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