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On the Definiteness of Gauss-Kronrod
Integration Rules

By Philip Rabinowitz

Abstract. The nondefiniteness of the Kronrod extension of the Gauss-Gegenbauer integration
rule with weight function w(x; p) = (1 — x2)*71/2 0 < p < 1, is shown when there are more
than three abscissas.

In a recent paper, Akrivis and Forster [1] have shown that the Clenshaw-Curtis
and related integration rules are nondefinite, i.e., that the error Rf cannot be
expressed in the form

Rf = f “*V ()
where d is the precision of the rule. Using their approach combined with some of
our previous results [3], we shall show that the same holds for the Kronrod extension
(KE) of the Gauss-Gegenbauer integration rule (GGIR) with respect to the weight
function

(1) w(xsp) = (1-x2)*2

when p satisfies 0 < p < 1. In particular, the usual Gauss-Kronrod rule (p = 1/2)
is nondefinite. We shall first give the results in [1] needed for our presentation. Then
we shall introduce the KEGGIR. Finally, we shall prove the nondefiniteness of the
KEGGIR for p € (0,1). The results on the KEGGIR appear in [3] and we shall not

mention this in the sequel.
Consider the open integration rule Q, satisfying

2) [ w()f(x) dx = 0,1 + R, f,
where
(3) 0./ = Twf(x).  l<x<xy< - <x, <1,

i=1
and w(x) is a weight function which is positive for x € (-1,1). Q, is said to be of
(exact) precision d if R,f = 0 when f is a polynomial of degree < d and if there
exists at least one polynomial p of degree d + 1 for which R,p # 0. A slight
generalization of Proposition 1 in [1] states that if there exists a function f € C[-1,1]
such that f¢*D > 0, f“@*D 2 0 and R, f < 0, then the open rule Q, of precision d
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is nondefinite. We shall now introduce the KEGGIR, Q,,.;, and determine a
function f, satisfying the hypotheses of this generalization. This will prove our claim
that the KEGGIR’s are nondefinite.

The abscissas x;,, i =1,...,n, of the GGIR are the zeros of the Gegenbauer
polynomial C¥(x) and lie in (-1, 1). These polynomials are orthogonal with respect
to w(x; n) and have the following normalization:

(4) [ Wl m)CHx)Ca(x) dx = 8,k
where
(5) o= 72T (n + 20)T (0 + 1/2)/((n + p)n!T(p)T(2p)).
The KEGGIR, Q,,.;, is given by
n n+1
(6) Qrpirf = Z u,f(x;) + Z v.f (%),
i=1 i=1

where the y; are the zeros of the Szegd polynomial E, ., ,(x) which satisfies the
orthogonality conditions

fl w(x; ) CHX)E,,, ,(x)x*dx =0, k=0,1,...,n.

For 0 < p <1, the y, lie in (-1,1) so that Q,,,, is an open integration rule. The
precision d of Q,,,, is given by

d= {3n+1, n even,

3n+2, nodd,
for 0 < p < 2, p # 1. The Szegd polynomials are given by
m-1 A Ti(x), neven,
(7) E,1,(x)= E:O ANTo0(x) + { - n odd,

where m = [(n + 1)/2] and the T,(x) are the Chebyshev polynomials of the first
kind. The A,, are given by

k
(8) Aop = 27t Y fishiein=0, k=1,2,...,

i=1
where
Y"#=‘/;F(n+2y)/r(n+#+1)a f0#=1’

L= =p/))Q —p/(n+p+i)fio1,
and we have not shown the dependence on n of the f;, and the A,,. For 0 < p <1,
the sequence {A,: i = 1,2,...} is strictly monotonic increasing.*

*Professor H. Brass has pointed out a gap in the proof in [3, p. 1279] that the sequence {A;, = A,pa;,:
i =1,2,...} is strictly monotonic increasing, since it does not follow that if a sequence { f;: j = 0,1,...}
is strictly completely monotonic and £ ga;u’ = (% f;u/}7!, then the sequence {-o;: i =1,2,...} is
strictly completely monotonic. All that we can say is that it is completely monotonic. The following
sequence provides a counterexample: f, =27/, ag =1, &y = -1/2, a; =0, i > 1. Professor Brass has
also shown how to close this gap in our case, since if we did not have strict monotonicity, then
A, =A;.,, for some integer i = i,. Hence by complete monotonicity, A, = A, , forall i > iy which
would imply that F(u) = L%.,f,,u’ is a rational function. However, this is not the case since F(u) is the
hypergeometric function , F(1 —p,n+ 1I;n+p+ 1l;u)and 0 <p < 1.
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The Gegenbauer polynomials and the Szegé polynomials are related by the
following equality:

(9) CHX)E, 1,(x) = X .Gl i),
i=0

where the ¢, = c,(p, n) are certain constants. For our purpose, the values of ¢, and
¢, are important. They are given by

You
(A=A , neven,
(10) o= 2Y»1+l,u( mu m+l,y.)
0, n odd,
an.
— (A, —A , nodd,
(11) o = 2.},"4_2.“( m—1.p m+1.p.)
0, n even.

By the monotonicity of the sequence {A,,}, it follows that for 0 < p <1, ¢, is
negative for m > 1, i.e., for n > 2 and ¢, for m > 2, i.e,, for n > 3. We now define

(12) fk('x)= Citl(x)Erz+1,;t('x)Cr¢l+1+k(x)’ k=0’1'
Then, since Q,,,,f, =0,

1
(13)  Rypafi= [ Wm0 de = ey, k=01

Furthermore, f&"*2*K)> (. If n is even, ¢, # 0 and we choose k = 0 so that
3n+2+k=d+1.1If nisodd, ¢, =0 but ¢, # 0 and we choose k =1 so that
again 3n + 2 + k = d + 1. In either case, R,, ,f, <0 for n > 2 which implies
that Q,, ., is nondefinite. For n = 1, Q,, ., is the 3-point GGIR,which is definite.
For p =0, Q,,., is a Lobatto-Chebyshev rule of the first kind [2, p. 104] and
hence is definite. Similarly, for p =1, Q,,,, is a Gauss-Chebyshev rule of the
second kind [2, p. 98], which is also definite. For 1 < p < 2, in which range
KEGGIR’s exist, the question of definiteness is still not settled. The same holds for
the KE of the Lobatto-Gegenbauer integation rules except for that of the Lobatto-
Chebyshev rule of the first kind, which is itself a Lobatto-Chebyshev rule and hence
is definite.
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