A note on class-number one in certain real quadratic and pure cubic fields
Authors:
M. Tennenhouse and H. C. Williams
Journal:
Math. Comp. 46 (1986), 333-336
MSC:
Primary 11Y40; Secondary 11R11, 11R16
DOI:
https://doi.org/10.1090/S0025-5718-1986-0815853-3
MathSciNet review:
815853
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let p be any odd prime and let be the class number of the real quadratic field
. The results of a computer run to determine the density of the field
with
and
are presented. Similar results are given for pure cubic fields
with
.
- [1] Henri Cohen, Sur la distribution asymptotique des groupes de classes, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 5, 245–247 (French, with English summary). MR 693784
- [2] H. Eisenbeis, G. Frey, and B. Ommerborn, Computation of the 2-rank of pure cubic fields, Math. Comp. 32 (1978), no. 142, 559–569. MR 480416, https://doi.org/10.1090/S0025-5718-1978-0480416-4
- [3] Taira Honda, Pure cubic fields whose class numbers are multiples of three, J. Number Theory 3 (1971), 7–12. MR 292795, https://doi.org/10.1016/0022-314X(71)90045-X
- [4]
S. Kuroda, "Table of class numbers
for quadratic fields
,
," Math. Comp., v. 29, 1975, pp. 335-336, UMT File.
- [5] Richard B. Lakein, Computation of the ideal class group of certain complex quartic fields. II, Math. Comp. 29 (1975), 137–144. MR 444605, https://doi.org/10.1090/S0025-5718-1975-0444605-4
- [6] H. W. Lenstra Jr., On the calculation of regulators and class numbers of quadratic fields, Number theory days, 1980 (Exeter, 1980) London Math. Soc. Lecture Note Ser., vol. 56, Cambridge Univ. Press, Cambridge, 1982, pp. 123–150. MR 697260
- [7] H. Zantema, Class numbers and units, Computational methods in number theory, Part II, Math. Centre Tracts, vol. 155, Math. Centrum, Amsterdam, 1982, pp. 213–234. MR 702518
- [8] Daniel Shanks, Class number, a theory of factorization, and genera, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence, R.I., 1971, pp. 415–440. MR 0316385
- [9] H. C. Williams, Improving the speed of calculating the regulator of certain pure cubic fields, Math. Comp. 35 (1980), no. 152, 1423–1434. MR 583520, https://doi.org/10.1090/S0025-5718-1980-0583520-4
- [10] Hugh C. Williams, Continued fractions and number-theoretic computations, Rocky Mountain J. Math. 15 (1985), no. 2, 621–655. Number theory (Winnipeg, Man., 1983). MR 823273, https://doi.org/10.1216/RMJ-1985-15-2-621
- [11] H. C. Williams and J. Broere, A computational technique for evaluating 𝐿(1,𝜒) and the class number of a real quadratic field, Math. Comp. 30 (1976), no. 136, 887–893. MR 414522, https://doi.org/10.1090/S0025-5718-1976-0414522-5
- [12] H. C. Williams, G. W. Dueck, and B. K. Schmid, A rapid method of evaluating the regulator and class number of a pure cubic field, Math. Comp. 41 (1983), no. 163, 235–286. MR 701638, https://doi.org/10.1090/S0025-5718-1983-0701638-2
- [13] H. C. Williams and Daniel Shanks, A note on class-number one in pure cubic fields, Math. Comp. 33 (1979), no. 148, 1317–1320. MR 537977, https://doi.org/10.1090/S0025-5718-1979-0537977-7
Retrieve articles in Mathematics of Computation with MSC: 11Y40, 11R11, 11R16
Retrieve articles in all journals with MSC: 11Y40, 11R11, 11R16
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1986-0815853-3
Article copyright:
© Copyright 1986
American Mathematical Society