A note on class-number one in certain real quadratic and pure cubic fields

Authors:
M. Tennenhouse and H. C. Williams

Journal:
Math. Comp. **46** (1986), 333-336

MSC:
Primary 11Y40; Secondary 11R11, 11R16

DOI:
https://doi.org/10.1090/S0025-5718-1986-0815853-3

MathSciNet review:
815853

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let *p* be any odd prime and let be the class number of the real quadratic field . The results of a computer run to determine the density of the field with and are presented. Similar results are given for pure cubic fields with .

**[1]**Henri Cohen,*Sur la distribution asymptotique des groupes de classes*, C. R. Acad. Sci. Paris Sér. I Math.**296**(1983), no. 5, 245–247 (French, with English summary). MR**693784****[2]**H. Eisenbeis, G. Frey, and B. Ommerborn,*Computation of the 2-rank of pure cubic fields*, Math. Comp.**32**(1978), no. 142, 559–569. MR**480416**, https://doi.org/10.1090/S0025-5718-1978-0480416-4**[3]**Taira Honda,*Pure cubic fields whose class numbers are multiples of three*, J. Number Theory**3**(1971), 7–12. MR**292795**, https://doi.org/10.1016/0022-314X(71)90045-X**[4]**S. Kuroda, "Table of class numbers for quadratic fields , ,"*Math. Comp.*, v. 29, 1975, pp. 335-336, UMT File.**[5]**Richard B. Lakein,*Computation of the ideal class group of certain complex quartic fields. II*, Math. Comp.**29**(1975), 137–144. MR**444605**, https://doi.org/10.1090/S0025-5718-1975-0444605-4**[6]**H. W. Lenstra Jr.,*On the calculation of regulators and class numbers of quadratic fields*, Number theory days, 1980 (Exeter, 1980) London Math. Soc. Lecture Note Ser., vol. 56, Cambridge Univ. Press, Cambridge, 1982, pp. 123–150. MR**697260****[7]**H. Zantema,*Class numbers and units*, Computational methods in number theory, Part II, Math. Centre Tracts, vol. 155, Math. Centrum, Amsterdam, 1982, pp. 213–234. MR**702518****[8]**Daniel Shanks,*Class number, a theory of factorization, and genera*, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence, R.I., 1971, pp. 415–440. MR**0316385****[9]**H. C. Williams,*Improving the speed of calculating the regulator of certain pure cubic fields*, Math. Comp.**35**(1980), no. 152, 1423–1434. MR**583520**, https://doi.org/10.1090/S0025-5718-1980-0583520-4**[10]**Hugh C. Williams,*Continued fractions and number-theoretic computations*, Rocky Mountain J. Math.**15**(1985), no. 2, 621–655. Number theory (Winnipeg, Man., 1983). MR**823273**, https://doi.org/10.1216/RMJ-1985-15-2-621**[11]**H. C. Williams and J. Broere,*A computational technique for evaluating 𝐿(1,𝜒) and the class number of a real quadratic field*, Math. Comp.**30**(1976), no. 136, 887–893. MR**414522**, https://doi.org/10.1090/S0025-5718-1976-0414522-5**[12]**H. C. Williams, G. W. Dueck, and B. K. Schmid,*A rapid method of evaluating the regulator and class number of a pure cubic field*, Math. Comp.**41**(1983), no. 163, 235–286. MR**701638**, https://doi.org/10.1090/S0025-5718-1983-0701638-2**[13]**H. C. Williams and Daniel Shanks,*A note on class-number one in pure cubic fields*, Math. Comp.**33**(1979), no. 148, 1317–1320. MR**537977**, https://doi.org/10.1090/S0025-5718-1979-0537977-7

Retrieve articles in *Mathematics of Computation*
with MSC:
11Y40,
11R11,
11R16

Retrieve articles in all journals with MSC: 11Y40, 11R11, 11R16

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1986-0815853-3

Article copyright:
© Copyright 1986
American Mathematical Society