On Mordell's equation : a problem of Stolarsky
Author:
Ray P. Steiner
Journal:
Math. Comp. 46 (1986), 703-714
MSC:
Primary 11D25; Secondary 11-04, 11Y50
DOI:
https://doi.org/10.1090/S0025-5718-1986-0829640-3
MathSciNet review:
829640
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: On page 1 of his book Algebraic Numbers and Diophantine Approximation, K. B. Stolarsky posed the problem of solving the equation in positive integers. In the present paper we refine some techniques of Ellison and Pethö and show that the complete set of integer solutions of Stolarsky's equation is


- [1] V. I. Baulin, On an indeterminate equation of the third degree with least positive discriminant, Tul′sk. Gos. Ped. Inst. Učen. Zap. Fiz.-Mat. Nauk Vyp. 7 (1960), 138–170 (Russian). MR 0199149
- [2] A. I. Borevich and I. R. Shafarevich, Number theory, Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. MR 0195803
- [3] B. N. Delone and D. K. Faddeev, The theory of irrationalities of the third degree, Translations of Mathematical Monographs, Vol. 10, American Mathematical Society, Providence, R.I., 1964. MR 0160744
- [4] W. J. Ellison, "Recipes for solving Diophantine problems by Baker's method," Publ. Mathématiques, v. Ann. 1, Fasc. 1, 1972.
- [5] W. J. Ellison, F. Ellison, J. Pesek, C. E. Stahl, and D. S. Stall, The Diophantine equation 𝑦²+𝑘=𝑥³, J. Number Theory 4 (1972), 107–117. MR 316376, https://doi.org/10.1016/0022-314X(72)90058-3
- [6] Ove Hemer, On the solvability of the Diophantine equation 𝑎𝑥²+𝑏𝑦²+𝑐𝑧²=0 in imaginary Euclidean quadratic fields, Ark. Mat. 2 (1952), 57–82. MR 49917, https://doi.org/10.1007/BF02591382
- [7] Wilhelm Ljunggren, Einige Bemerkungen über die Darstellung ganzer Zahlen durch binäre kubische Formen mit positiver Diskriminante, Acta Math. 75 (1943), 1–21 (German). MR 17303, https://doi.org/10.1007/BF02404100
- [8] A. Pethő, Full cubes in the Fibonacci sequence, Publ. Math. Debrecen 30 (1983), no. 1-2, 117–127. MR 733078
- [9] V. G. Sprindzhuk, Klassicheskie diofantovy uravneniya ot dvukh neizvestnykh, “Nauka”, Moscow, 1982 (Russian). MR 685430
- [10] Kenneth B. Stolarsky, Algebraic numbers and Diophantine approximation, Marcel Dekker, Inc., New York, 1974. Pure and Applied Mathematics, No. 26. MR 0374041
- [11] Nicholas Tzanakis, The Diophantine equation 𝑥³-3𝑥𝑦²-𝑦³=1 and related equations, J. Number Theory 18 (1984), no. 2, 192–205. MR 741950, https://doi.org/10.1016/0022-314X(84)90053-2
- [12] Michel Waldschmidt, A lower bound for linear forms in logarithms, Acta Arith. 37 (1980), 257–283. MR 598881, https://doi.org/10.4064/aa-37-1-257-283
Retrieve articles in Mathematics of Computation with MSC: 11D25, 11-04, 11Y50
Retrieve articles in all journals with MSC: 11D25, 11-04, 11Y50
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1986-0829640-3
Keywords:
Mordell's equation,
Ellison's method,
Davenport's lemma,
linear forms in logarithms,
Thue equations,
cubic fields
Article copyright:
© Copyright 1986
American Mathematical Society