The computation of the fundamental unit of totally complex quartic orders
Author:
Johannes Buchmann
Journal:
Math. Comp. 48 (1987), 39-54
MSC:
Primary 11Y40; Secondary 11R16
DOI:
https://doi.org/10.1090/S0025-5718-1987-0866097-1
MathSciNet review:
866097
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We describe an efficient algorithm for the computation of the regulator and a fundamental unit of an arbitrary totally complex quartic order. We analyze its complexity and we present tables with computational results for the orders ,
.
- [1] Hédi Amara, Groupe des classes et unité fondamentale des extensions quadratiques relatives à un corps quadratique imaginaire principal, Pacific J. Math. 96 (1981), no. 1, 1–12 (French). MR 634758
- [2] A. I. Borevich and I. R. Shafarevich, Number theory, Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. MR 0195803
- [3] Johannes Buchmann, A generalization of Voronoĭ’s unit algorithm. I, J. Number Theory 20 (1985), no. 2, 177–191. MR 790781, https://doi.org/10.1016/0022-314X(85)90039-3
- [4] Johannes Buchmann, Abschätzung der Periodenlänge einer verallgemeinerten Kettenbruchentwicklung, J. Reine Angew. Math. 361 (1985), 27–34 (German). MR 807249, https://doi.org/10.1515/crll.1985.361.27
- [5] B. N. Delone and D. K. Faddeev, The theory of irrationalities of the third degree, Translations of Mathematical Monographs, Vol. 10, American Mathematical Society, Providence, R.I., 1964. MR 0160744
- [6] U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comp. 44 (1985), no. 170, 463–471. MR 777278, https://doi.org/10.1090/S0025-5718-1985-0777278-8
- [7] N. Jeans, "Calculation of fundamental units in some types of quartic number fields," Bull. Austral. Math. Soc., v. 31, 1985, pp. 479-480.
- [8] Tomio Kubota, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J. 10 (1956), 65–85 (German). MR 83009
- [9] Richard B. Lakein, Computation of the ideal class group of certain complex quartic fields, Math. Comp. 28 (1974), 839–846. MR 374090, https://doi.org/10.1090/S0025-5718-1974-0374090-1
- [10] Richard B. Lakein, Computation of the ideal class group of certain complex quartic fields. II, Math. Comp. 29 (1975), 137–144. MR 444605, https://doi.org/10.1090/S0025-5718-1975-0444605-4
- [11] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), no. 4, 515–534. MR 682664, https://doi.org/10.1007/BF01457454
- [12] H. W. Lenstra Jr., Integer programming with a fixed number of variables, Math. Oper. Res. 8 (1983), no. 4, 538–548. MR 727410, https://doi.org/10.1287/moor.8.4.538
- [13] H. W. Lenstra Jr., On the calculation of regulators and class numbers of quadratic fields, Number theory days, 1980 (Exeter, 1980) London Math. Soc. Lecture Note Ser., vol. 56, Cambridge Univ. Press, Cambridge, 1982, pp. 123–150. MR 697260
- [14] Oskar Perron, Die Lehre von den Kettenbrüchen. Bd I. Elementare Kettenbrüche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1954 (German). 3te Aufl. MR 0064172
- [15] Rudolf Scharlau, The fundamental unit in quadratic extensions of imaginary quadratic fields, Arch. Math. (Basel) 34 (1980), no. 6, 534–537. MR 596861, https://doi.org/10.1007/BF01224994
- [16] Daniel Shanks, The infrastructure of a real quadratic field and its applications, Proceedings of the Number Theory Conference (Univ. Colorado, Boulder, Colo., 1972) Univ. Colorado, Boulder, Colo., 1972, pp. 217–224. MR 0389842
- [17] Ray Steiner, On the units in algebraic number fields, Proceedings of the Sixth Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1976) Congress. Numer., XVIII, Utilitas Math., Winnipeg, Man., 1977, pp. 413–435. MR 532716
- [18] G. Voronoi, A Generalization of the Continued Fraction Algorithm, Dissertation, Warsaw, 1896.
- [19] Hugh C. Williams, Continued fractions and number-theoretic computations, Rocky Mountain J. Math. 15 (1985), no. 2, 621–655. Number theory (Winnipeg, Man., 1983). MR 823273, https://doi.org/10.1216/RMJ-1985-15-2-621
- [20] H. C. Williams, G. W. Dueck, and B. K. Schmid, A rapid method of evaluating the regulator and class number of a pure cubic field, Math. Comp. 41 (1983), no. 163, 235–286. MR 701638, https://doi.org/10.1090/S0025-5718-1983-0701638-2
- [21] Johannes Buchmann and H. C. Williams, On principal ideal testing in totally complex quartic fields and the determination of certain cyclotomic constants, Math. Comp. 48 (1987), no. 177, 55–66. MR 866098, https://doi.org/10.1090/S0025-5718-1987-0866098-3
- [22] Horst G. Zimmer, Computational problems, methods, and results in algebraic number theory, Lecture Notes in Mathematics, Vol. 262, Springer-Verlag, Berlin-New York, 1972. MR 0323751
Retrieve articles in Mathematics of Computation with MSC: 11Y40, 11R16
Retrieve articles in all journals with MSC: 11Y40, 11R16
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1987-0866097-1
Article copyright:
© Copyright 1987
American Mathematical Society