The cyclotomic numbers of order fifteen

Authors:
Nicholas Buck, Lones Smith, Blair K. Spearman and Kenneth S. Williams

Journal:
Math. Comp. **48** (1987), 67-83

MSC:
Primary 11B83; Secondary 11T21

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866099-5

MathSciNet review:
866099

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Explicit formulae are obtained for the cyclotomic numbers of order 15.

**[1]**Helen Popova Alderson,*On the septimic character of 2 and 3*, Proc. Cambridge Philos. Soc.**74**(1973), 421–433. MR**323763**, https://doi.org/10.1017/s030500410007715x**[2]**L. D. Baumert and H. Fredricksen,*The cyclotomic numbers of order eighteen with applications to difference sets*, Math. Comp.**21**(1967), 204–219. MR**223322**, https://doi.org/10.1090/S0025-5718-1967-0223322-5**[3]**H. Davenport & H. Hasse, "Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen,"*J. Reine Angew. Math.*, v. 172, 1934, pp. 151-182.**[4]**L. E. Dickson,*Cyclotomy, Higher Congruences, and Waring’s Problem*, Amer. J. Math.**57**(1935), no. 2, 391–424. MR**1507083**, https://doi.org/10.2307/2371217**[5]**L. E. Dickson,*Cyclotomy when 𝑒 is composite*, Trans. Amer. Math. Soc.**38**(1935), no. 2, 187–200. MR**1501808**, https://doi.org/10.1090/S0002-9947-1935-1501808-6**[6]**Ronald J. Evans and Jay Roderick Hill,*The cyclotomic numbers of order sixteen*, Math. Comp.**33**(1979), no. 146, 827–835. MR**521298**, https://doi.org/10.1090/S0025-5718-1979-0521298-2**[7]**R. J. Evans, "Table of cyclotomic numbers of order twenty-four,"*Math. Comp.*, v. 35, 1980, Review**12**, pp. 1036-1038.**[8]**Christian Friesen, Joseph B. Muskat, Blair K. Spearman, and Kenneth S. Williams,*Cyclotomy of order 15 over 𝐺𝐹(𝑝²),𝑝=4,11(𝑚𝑜𝑑15)*, Internat. J. Math. Math. Sci.**9**(1986), no. 4, 665–704. MR**870524**, https://doi.org/10.1155/S0161171286000832**[9]**Reinaldo E. Giudici, Joseph B. Muskat, and Stanley F. Robinson,*On the evaluation of Brewer’s character sums*, Trans. Amer. Math. Soc.**171**(1972), 317–347. MR**306122**, https://doi.org/10.1090/S0002-9947-1972-0306122-5**[10]**Emma Lehmer,*On the number of solutions of 𝑢^{𝑘}+𝐷≡𝑤²(\mod𝑝)*, Pacific J. Math.**5**(1955), 103–118. MR**67918****[11]**Philip A. Leonard and Kenneth S. Williams,*The cyclotomic numbers of order seven*, Proc. Amer. Math. Soc.**51**(1975), 295–300. MR**371868**, https://doi.org/10.1090/S0002-9939-1975-0371868-8**[12]**Philip A. Leonard and Kenneth S. Williams,*The cyclotomic numbers of order eleven*, Acta Arith.**26**(1974/75), no. 4, 365–383. MR**376513**, https://doi.org/10.4064/aa-26-4-365-383**[13]**J. B. Muskat,*The cyclotomic numbers of order fourteen*, Acta Arith.**11**(1965/66), 263–279. MR**193081**, https://doi.org/10.4064/aa-11-3-263-279**[14]**Joseph B. Muskat,*On Jacobi sums of certain composite orders*, Trans. Amer. Math. Soc.**134**(1969), 483–502. MR**232752**, https://doi.org/10.1090/S0002-9947-1968-0232752-4**[15]**Joseph B. Muskat and Albert L. Whiteman,*The cyclotomic numbers of order twenty*, Acta Arith.**17**(1970), 185–216. MR**268151**, https://doi.org/10.4064/aa-17-2-185-216**[16]**Joseph B. Muskat and Yun Cheng Zee,*On the uniqueness of solutions of certain Diophantine equations*, Proc. Amer. Math. Soc.**49**(1975), 13–19. MR**360461**, https://doi.org/10.1090/S0002-9939-1975-0360461-9**[17]**Albert Leon Whiteman,*The cyclotomic numbers of order sixteen*, Trans. Amer. Math. Soc.**86**(1957), 401–413. MR**92807**, https://doi.org/10.1090/S0002-9947-1957-0092807-7**[18]**Albert Leon Whiteman,*The cyclotomic numbers of order ten*, Proc. Sympos. Appl. Math., Vol. 10, American Mathematical Society, Providence, R.I., 1960, pp. 95–111. MR**0113851****[19]**A. L. Whiteman,*The cyclotomic numbers of order twelve*, Acta Arith.**6**(1960), 53–76. MR**118709**, https://doi.org/10.4064/aa-6-1-53-76

Retrieve articles in *Mathematics of Computation*
with MSC:
11B83,
11T21

Retrieve articles in all journals with MSC: 11B83, 11T21

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1987-0866099-5

Article copyright:
© Copyright 1987
American Mathematical Society